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ABSTRACT

This dissertation consists of three chapters on regression discontinuity (RD) design and partial

identification, which are widely used techniques in program evaluation.

The first and the second chapters discuss statistic inference for the treatment effect estimator

in fuzzy RD designs. Fuzzy RD design and instrumental variables (IV) regression share similar

identification strategies and numerically yield the same results under certain conditions. While the

weak identification problem is widely recognized in IV regressions, it has drawn much less attention

in fuzzy RD designs, where the standard t-test can also suffer from asymptotic size distortions

and the confidence interval obtained by inverting such a test becomes invalid. I explicitly model

fuzzy RD designs in parallel with IV regressions, and based on the extensive literature of the

latter, develop tests which are robust to weak identification in fuzzy RD designs, including the

Anderson-Rubin (AR) test, the Lagrange multiplier (LM) test, and the conditional likelihood ratio

(CLR) test. These tests have correct size regardless of the strength of identification and their power

properties are similar to those in IV regressions. Due to the similarities between a fuzzy RD design

and an IV regression, one can choose either method for estimation and inference. However, it is

shown that adopting a fuzzy RD design with newly proposed tests has the potential to achieve

more power without introducing size distortions in hypothesis testing and is thus recommended.

An extension to testing for quantile treatment effects in fuzzy RD designs is also discussed.

RD estimators are usually estimated with nonparametric methods and have bias. A new wild

bootstrap procedure is proposed to correct bias and construct valid confidence intervals in fuzzy

regression discontinuity designs. This procedure uses a wild bootstrap based on second order local

polynomials to estimate and remove the bias from linear models. The bias-corrected estimator is

then bootstrapped itself to generate valid confidence intervals. While the conventional confidence

intervals generated by adopting MSE-optimal bandwidth is asymptotically not valid, the confidence



www.manaraa.com

x

intervals generated by this procedure have correct coverage under conditions similar to Calonico,

Cattaneo and Titiunik’s(2014, Econometrica) analytical correction. Simulation studies provide

evidence that this new method is as accurate as the analytical corrections when applied to a

variety of data generating processes featuring heteroskedasticity, endogeneity and clustering. As

an example, its usage is demonstrated through a reanalysis of the scholastic achievement data used

by Angrist and Lavy (1999).

In the third chapter, a novel numerical approach is proposed to partially identify treatment

effects. Endogenous treatment and measurement error are very common in survey data and pose

threats to reliable estimation of treatment effects. The new approach considers these two issues

simultaneously and provides bounds for treatment effects. Conceptually, treatment effects and

model assumptions are formulated as linear restrictions on a large set of probability mass. One can

then check if any given treatment effect is consistent with model assumptions and observed data.

Compared with previous methods, the newly proposed numerical approach is general enough to

be applied to various different problems and guarantees sharp bounds. An example is provided to

show that how the distribution of a treatment effect and how the averages of multiple treatment

effects can be partially identified through this approach.
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CHAPTER 1. ROBUST INFERENCE IN FUZZY REGRESSION

DISCONTINUITY DESIGNS

Fuzzy regression discontinuity (RD) design and instrumental variables (IV) regression share

similar identification strategies and numerically yield the same results under certain conditions.

While the weak identification problem is widely recognized in IV regressions, it has drawn much

less attention in fuzzy RD designs, where the standard t-test can also suffer from asymptotic size

distortions and the confidence interval obtained by inverting such a test becomes invalid. I explicitly

model fuzzy RD designs in parallel with IV regressions, and based on the extensive literature of

the latter, develop tests which are robust to weak identification in fuzzy RD designs, including

the Anderson-Rubin (AR) test, the Lagrange multiplier (LM) test, and the conditional likelihood

ratio (CLR) test. These tests have correct size regardless of the strength of identification and their

power properties are similar to those in IV regressions. Due to the similarities between a fuzzy RD

design and an IV regression, one can choose either method for estimation and inference. However,

it is shown that adopting a fuzzy RD design with newly proposed tests has the potential to achieve

more power without introducing size distortions in hypothesis testing and is thus recommended.

An extension to testing for quantile treatment effects in fuzzy RD designs is also discussed.

1.1 Introduction

Regression discontinuity (RD) design is a very popular way of estimating the causal effect of

an endogenous treatment on various outcomes. Since the early work by Hahn et al. (2001) and

Porter (2003), studies in this field have been growing fast. For example, some recent advances

include design validity (McCrary, 2008; Barreca et al., 2016), bandwidth selection (Imbens and

Kalyanaraman, 2012; Arai and Ichimura, 2013; Gelman and Imbens, 2017), statistical inference

(Lee and Card, 2008; Calonico et al., 2014; Card et al., 2015b; Otsu et al., 2015; Bartalotti et al.,
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2017a; Bartalotti and Brummet, 2017; Chiang et al., 2017), quantile treatment effects (Frandsen

et al., 2012; Qu et al., 2015; Chiang and Sasaki, 2016), etc. A comprehensive review can be found in

Imbens and Lemieux (2008) and Lee and Lemieux (2010). In a canonical RD design, the treatment

probability conditional on a covariate experiences a discontinuity and is thought to be exogenously

induced by policy rules governing the treatment assignment based on the covariate. The fact that

this discontinuity in treatment probability is mirrored in average outcome allows researchers to

identify the causal treatment effect. For example, in the first application by Thistlethwaite and

Campbell (1960), the Certificates of Merit was given to students largely based on a qualifying score.

The probability of a student receiving this award is zero if (s)he scores below a certain threshold, but

jumps to around 3.4% if marginally passes this threshold. Thus, the jump in treatment probability

can be used to study the causal effect of Certificates of Merit on future outcomes such as career

aspirations.

The treatment effect in a RD design is usually identified as the ratio of discontinuities in the

average outcome and the treatment probability. The term “fuzzy” is used to describe those RD

designs where the jump in the treatment probability is less than one and the term “sharp” is

used for those where the jump in the treatment probability is exactly one. Unlike sharp RD

designs, fuzzy RD designs may have a weak identification problem where the standard t-test, as

well as the confidence interval obtained by inverting the t-test, becomes unreliable. One can get

the intuition from the analogy between a fuzzy RD design and an IV regression model, which

is widely known to have a weak identification problem; that is, the convergence of a standard

t-test statistic to a normal distribution is not uniform with respect to the correlation between

the IV and the endogenous variable (Mikusheva et al., 2013). The fact that the treatment effect

estimator in a fuzzy RD design could be numerically the same as that in an IV regression model

under certain conditions suggests that weak identification can also happen in fuzzy RD designs.

In practice, this problem could be exacerbated because only a fraction of the data is actually used

for estimation. Feir et al. (2016) investigated a set of influential applied papers that use fuzzy RD

designs and found that “weak identification appears to be a problem in at least one of the empirical
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specifications” for half of the articles where enough information is reported. Though there has been

tremendous development in the weak identification literature on IV regression models (Stock et al.,

2002; Dufour, 2003; Mikusheva et al., 2013), the weak identification in the context of fuzzy RD

designs is not well recognized. Feir et al. (2016) seems to be the only published study on statistical

inference robust to weak identification in fuzzy RD designs.

In this article, I draw on insights from the weak identification literature on IV regression mod-

els and show that many widely used tests such as the Anderson-Rubin (AR) test, the Lagrange

multiplier (LM) test and the likelihood ratio (LR) test can be adapted to fuzzy RD designs. This is

achieved by explicitly modeling fuzzy RD designs in parallel with IV regressions. In particular, the

relevance condition is captured by discontinuities in the treatment probability, and the strength of

identification in a fuzzy RD design depends on not only the magnitude of the discontinuity, but

also on how precisely it can be estimated. Standard inference may become unreliable when the

discontinuity is small in magnitude, or of moderate size but can only be estimated with excessive

noise. The goal is to develop valid tests even in the case of weak identification.

To build a theoretical model, I start by assuming that discontinuities in the treatment proba-

bility and the average outcome are observable random variables. They follow normal distribution

with known covariance. Tests are then developed for jointly testing the treatment effect and its

derivative following the regression probability jump and kink (RPJK) framework (Dong, 2016). I

show that AR, LM, and LR statistics in this case are equivalent and have pivotal null distribution.

Tests which utilize these statistics and critical values defined by percentiles of the null distribu-

tion are similar — that is, they have the same null rejection probability regardless of the value of

nuisance parameters — a crucial property of the tests in order to be robust to weak identification.

I demonstrate how to apply the proposed tests when extra information on the treatment effect

derivative is available. In particular, if the treatment effect derivative is known (or reasonably

assumed), then the treatment effect is over identified. It is shown that both AR and LM statistics

have Chi-square distribution with different degrees of freedom under the null, while the LR statistic

has a null distribution affected by nuisance parameters. Following the idea of conditioning (Moreira,
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2003), I provide a simple approach to finding the critical value for the LR statistic by simulating

its null distribution conditioning on sufficient statistics of nuisance parameters. Consistent with

previous studies (Moreira, 2003; Andrews et al., 2006; Moreira, 2009), tests based on these statistics,

though all have correct size, have different power properties. In the case where the treatment effect

derivative is only known to lie in a subset of R, the projection method (Dufour, 1997; Dufour and

Taamouti, 2005, 2007) can be applied and, though conservative by construction, potentially have

more power than simply ignoring the information from treatment effect derivative.

The implementation of the tests is discussed. As is mentioned earlier, these tests are built by

firstly assuming observable, normally distributed random discontinuities with known covariance.

Tests are exactly similar under these conditions. In practice, estimators of the discontinuities and

their covariance are used, resulting in tests which proved to be asymptotically similar. A key factor

to guarantee this asymptotic similarity is to make sure the leading biases in estimated discontinuities

shrink fast enough that they do not affect the asymptotic distribution. I make use of the recent

work by Calonico et al. (2014) and show that to use bias-corrected point estimators coupled with

modified variance estimators, works well for the proposed tests.

A reduced form approach in the spirit of Chernozhukov and Hansen (2008b) is proposed for

even simpler implementation. It is shown that to test a fuzzy RD design estimator is equivalent to

testing the smoothness of a transformed outcome under the null. As a result, hypothesis testing in

fuzzy RD designs can be reduced to that done in sharp RD designs. Following this idea, I make

an extension to statistic inference for quantile treatment effects in the framework of Chernozhukov

and Hansen (2005). With a different set of assumptions, most importantly the rank similarity

condition, I establish the smoothness of quantiles of the transformed outcome under the null. As a

result, one can again test the null by simply testing the smoothness of quantiles. This approach is

in line with the robust inference method for instrumental variable quantile regression proposed by

Chernozhukov and Hansen (2008a).

It is well known that fuzzy RD design and IV regression share similar identification strategies

and numerically yield the same results under certain conditions. As a result, even with a fuzzy RD
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design one can still turn to IV regressions for estimation and, most importantly for robust inference

because the literature on the latter is well developed. However, I show that there is a benefit to

staying in the framework of fuzzy RD designs and using the proposed tests. Specifically, tests

could be more powerful without introducing size distortions. Intuitively, this benefit comes from

the fact that one can be very flexible in choosing models which best fit the data to estimate the

discontinuities. While local linear estimators are advocated in the RD design literature, Card et al.

(2014) argued that they are not always the best option and proposed choosing different polynomial

orders depending on the data. The proposed tests perfectly accommodate the flexibility of choosing

different models for the treatment/outcome variable and for the left/right side of the threshold,

which is an important feature not shared by robust tests in IV regressions.

To summarize, this chapter contributes to the RD design literature in several dimensions. First,

the link between fuzzy RD design and well known IV regression is explicitly examined and explored.

Common test statistics such as AR, LM, and LR statistics are developed for the fuzzy RD design in

both just-identified and over-identified cases. One of them is equivalent to the square of modified

t-statistic proposed by Feir et al. (2016). Second, detailed estimation procedures are provided.

Unlike Feir et al. (2016) who imposed the less practical assumption of under-smoothing, I allow

for the use of mean squared error (MSE) optimal bandwidths that are readily available in common

statistical packages. Third, despite the similarity and sometimes even equivalence between fuzzy

RD design and IV regression, it is shown that adopting a fuzzy RD design with the proposed tests

potentially leads to more power and is thus recommended. Lastly, a reduced form approach for

hypothesis testing in fuzzy RD design is discussed. This approach is simple in computation and

works equally well in both testing average treatment effects and quantile treatment effects.

The chapter is organized as follows: Section 1.2 contains the main results, including the con-

struction of test statistics and their theoretical properties. Section 1.3 discusses the alternative

implementation procedure and extension to quantile treatment effects. Section 1.4 presents simu-

lation results to demonstrate the performance of the proposed tests and Section 1.5 examines an

empirical application. Section 1.6 provides the conclusion.
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1.2 Robust Inference in Fuzzy Regression Discontinuity Designs

1.2.1 The model

I consider a fuzzy RD design with the following random sample

{
(
Yi(1), Yi(0), Ti(1), Ti(0), Xi

)
i=1,2,...,n

},

where Xi is a continuous running variable (also known as score or forcing variable), Yi(·) and Ti(·)

are the potential outcome and treatment respectively following the framework of Rubin causal

model (Rubin, 1974). Given a known threshold x̄, which is set to zero without loss of generality,

the running variable Xi determines whether unit i is assigned treatment (when Xi ≥ 0) or not

(when Xi < 0). Due to incomplete compliance, the actual treatment status may be different from

the assigned treatment. For subject i, we use Ti(1) to denote the actual treatment if assigned to

treatment group (Xi ≥ 0), and Ti(0) if assigned to the control group (Xi < 0).1 Analogously, we

use Yi(1) to denote the outcome if i is actually in the treatment group (when Ti = 1), and Yi(0) if

not (when Ti = 0).

In practice, the observed random sample is {
(
Yi, Ti, Xi

)
i=1,2,...,n

}, where Ti = 1(Xi ≥ 0)Ti(1) +

1(Xi < 0)Ti(0) and Yi = TiYi(1) + (1 − Ti)Yi(0), with 1(·) being the indicator function. The

parameter of interest is

τ =
lim
x→0+

E(Yi|Xi = x)− lim
x→0−

E(Yi|Xi = x)

lim
x→0+

E(Ti|Xi = x)− lim
x→0−

E(Ti|Xi = x)
. (1.1)

Under mild monotonicity and continuity conditions, Hahn et al. (2001) showed that this parameter

is the average treatment effect for a subgroup of units at the threshold whose treatment decisions

are affected by the running variable passing the threshold, i.e., E
(
Yi(1) − Yi(0)|Xi = 0, Ti(0) =

0, Ti(1) = 1
)
.

Let f·(·) be a density function and f·|·(·|·) be a conditional density function. Define random

vector Si ≡
(
Yi(1), Yi(0), Ti(1), Ti(0)

)
. I employ the continuity based framework (Sekhon and

Titiunik, 2017) and adopt the following assumption:

1Sharp RD design is a special case of fuzzy RD design where Ti(0) = 0 and Ti(1) = 1.
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Assumption 1.1. For some ε > 0, the following hold in the neighborhood (−ε, ε) around the

threshold x̄ = 0:

(a) fX(x) > 0.

(b) Ti is binary and Ti(1) ≥ Ti(0).

(c) For all Si, fS|X=x(Si) is continuous in x; its derivative
dfS|X=x(Si)

dx exists and is continuous

in x.

Assumption 1.1(a) rules out discrete running variables and guarantees the existence of observa-

tions around the threshold as the sample size increases. Though minor discreteness is unavoidable

in practice and not likely to affect the results, too few mass points near the threshold may cause

specification error (Lee and Card, 2008) or imply measurement error (Dong, 2015; Barreca et al.,

2016; Bartalotti et al., 2017a). Assumption 1.1(b) is very standard in IV models with binary instru-

ment and binary treatment (Angrist et al., 1996). It basically rules out the possibility of defiers,

who always choose the opposite of assigned treatment. Assumption 1.1(c) guarantees a certain

degree of smoothness for the potential treatment and outcome at the threshold. Smoothness con-

dition is generally required in RD designs and may take different forms depending on the specific

identification strategy employed. For example, the continuity of fS|X=x(Si) in x is sufficient for

the fuzzy RD estimator proposed by Hahn et al. (2001), but insufficient for the RPJK estimator

proposed by Dong (2016) or the fuzzy quantile RD estimator proposed by Frandsen et al. (2012).

In this chapter, I utilize discontinuities in both level and slope and, as a result, smoothness of

fS|X=x(Si) in x up to its first order derivative is assumed. It is worth noting that continuity of

fX(x) at the threshold is not required for the purpose of identification or inference, though its

discontinuity is a signal of potential failing of Assumption 1.1(c).2

2See McCrary (2008) for a formal test of the continuity of the running variable density function.
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With an intention to connect to the extensive literature on IV regression models, I assume there

exists a random vector (∆Yn ,∆Tn)T and rewrite the fuzzy RD design as two equations below:

∆Yn = τ∆Tn + u1,

∆Tn = Π + v1,

(1.2)

where Π = lim
x→0+

E(Ti|Xi = x) − lim
x→0−

E(Ti|Xi = x) is the unknown discontinuity in E(Ti) at

the threshold and u1, v1 are random errors with zero mean. The equation system (1.2) resembles

a simple IV regression model, where the instrument is fixed at one and the endogenous variable

is ∆Tn . The equation system (1.2) also differs significantly from an IV regression model because

there is only one observation. This discrepancy can be well explained by the fact that fuzzy RD

design shares the same identification strategies with IV regression only at the threshold, where the

probability of observing any a unit is theoretically zero. As a result, ∆Yn and ∆Tn can be best

interpreted as unbiased estimators (though do not exist in general) of discontinuities in outcome

and treatment at the threshold.

The modeling of fuzzy RD design as in (1.2) also sheds light on the strength of identification.

From the weak IV literature, it is trivial to find that the concentration parameter, which measures

the strength of identification or quality of instrument, is given by Υ = Π2/V(v1), with V(·)

denoting variance. This formula is consistent with the one derived by Feir et al. (2016). Their

formula for the concentration parameter is a function of sample size, bandwidth as well as kernel

choice because they replaced V(v1) with its estimator from a local linear model.3

Recent theoretical studies on RD designs and their applications have extended to regression

kink (RK) designs (Card et al., 2015a,b), where slope changes in the average treatment and the

outcome are utilized to help identify treatment effects. In particular, Dong (2016) showed that the

3When local linear models are employed in estimating a fuzzy RD design, Feir et al. (2016) derived the concen-
tration parameter as follows:

Υ(hn) =
nhnfX(0)Π2

k(σ2
T− + σ2

T+)
with k =

∫∞
0

( ∫∞
0
K(s)s2ds− u

∫∞
0
K(s)sds

)2
K(u)2du( ∫∞

0
K(u)du

∫∞
0
K(u)u2du− (

∫∞
0
K(u)udu)2

)2
where hn = Op(n

−r) is the bandwidth satisfying 1
5
< r < 1

3
, K(·) is a kernel function. Conditional variances of the

treatment variable are defined by σ2
T− = lim

x→0−
V[T |X = x] and σ2

T+ = lim
x→0+

V[T |X = x].
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following equality holds under Assumption 1.1:

lim
x→0+

∂E(Yi|Xi = x)

∂x
− lim
x→0−

∂E(Yi|Xi = x)

∂x
=τ
[

lim
x→0+

∂E(Ti|Xi = x)

∂x
− lim
x→0−

∂E(Ti|Xi = x)

∂x

]
+ τ ′Π.

(1.3)

The left side of equation (1.3) is the kink in the average outcome, the difference in parenthesis

on the right side is the kink in the treatment, and τ ′ is the first order derivative of the treatment

effect with respect to the running variable evaluated at the threshold.4 It is worth noting that τ ′

measures the changing rate of the treatment effect at the threshold. Thus, it serves as an indicator

of external validity of the locally identified treatment effect.5 Equation (1.3) shows that fuzzy RK

estimator is valid only when τ ′Π = 0. Without information on τ ′, equation (1.3) allows us to jointly

test parameters τ, τ ′; with τ ′ being a specific known value, equation (1.3) makes τ over identified.

I propose the following model based on equations (1.2) and (1.3):

∆Yn = τ∆Tn + u1,

∆Y ′n = τ∆T ′n + τ ′∆Tn + u2,

∆Tn = Π + v1,

∆T ′n = Π′ + v2,

(1.4)

where Π′ = lim
x→0+

∂E(Ti|Xi = x)/∂x − lim
x→0−

∂E(Ti|Xi = x)/∂x is the unknown kink in E(Ti) at

the threshold, u2 and v2 are random errors with zero mean. Analogous to ∆Yn and ∆Tn , ∆Y ′n and

∆T ′n are random variables with means τΠ′+τ ′Π and Π′ respectively. For example, ∆Y ′n could be an

unbiased estimator of the kink in E(Yi) at the threshold, and ∆T ′n could be an unbiased estimator

of the kink in E(Ti) at the threshold.

4Though Dong (2016) provided rigorous proof of equation (1.3), one can gain some intuition by thinking of
a slightly different outcome model featured by additive and linear treatment effect Y = Y0 + Tτ , where Y0 is a
smooth outcome function without treatment and T is a continuous treatment. By taking derivative with respect
to the running variable and then taking difference of the limits on both sides of the threshold, one can obtain

lim
x→0+

Y ′ − lim
x→0−

Y ′ = τ

(
lim
x→0+

T ′ − lim
x→0−

T ′
)

+ τ ′
(

lim
x→0+

T − lim
x→0−

T

)
. Through out this chapter, I use superscript

“ ′ ” as part of variable names for those defined as first order derivatives. I will later use superscript “T” to denote
transpose.

5With local policy invariance assumption, this derivative is also equal to the marginal threshold treatment effect.
See details from Dong and Lewbel (2015).
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Suppose a random vector (∆Yn ,∆Y ′n ,∆Tn ,∆T ′n)T is available, the objective for a researcher is

to estimate the parameter of interest, (τ, τ ′), and perform inferential statistic analysis based on a

realization of this random vector. The unknown constants, Π and Π′, are nuisance parameters and

of no direct interest. In the case of strong identification, standard tests work well because their

asymptotic distributions approximate their finite sample distributions closely. In the case of weak

identification, on the contrary, the actual distributions of standard test statistics are affected by

the nuisance parameters and could be significantly different from their asymptotic distributions.

For example, the parameter Υ = Π2/V(v1) is to a fuzzy RD design as the concentration parameter

is to an IV regression model. Consequently, to apply a standard t-test in the case of very small Υ

may fail to control its size and result in invalid confidence intervals. Statistic inference for a fuzzy

RK estimator is not exempted from this threat if the parameter Υ′ = Π
′2/V(v2), defined similarly

to Υ, is very small.6 Though many tests robust to weak identification have been proposed in the

weak IV literature, they are not directly applicable to fuzzy RD designs represented by equations

in (1.4).

1.2.2 Sufficient statistics and robust tests with known variance

In matrix notation, the equation system (1.4) can be rewritten as

∆Yn

∆Y ′n

∆Tn

∆T ′n


=



τ 0

τ ′ τ

1 0

0 1


 Π

Π′

+



v3

v4

v1

v2


, (1.5)

with

v3 = τv1 + u1, v4 = τv2 + τ ′v2,

6Similar to Υ, when local linear models are employed in estimation, it can be show that

Υ′(hn) =
nh3

nfX(0)Π′2

k′(σ2
T− + σ2

T+)
with k′ =

∫∞
0

( ∫∞
0
K(s)sds− u

∫∞
0
K(s)ds

)2
K(u)2du( ∫∞

0
K(u)du

∫∞
0
K(u)u2du− (

∫∞
0
K(u)udu)2

)2 .
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or more compactly, Wn ∼ N(µ,Ωn) where

Wn = (∆Yn ,∆Y ′n ,∆Tn ,∆T ′n)T ,

µ = (τΠ, τ ′Π + τΠ′,Π,Π′)T ,

Ωn = V
[
(v3, v4, v1, v2)T

]
.

It is worth noting that Wn naturally serves as a sufficient statistic for model (1.5) because it is the

only sample.7 Following the standard practice in weak IV literature, it is assumed that elements in

Wn are jointly normal with known covariance matrix Ωn. Moreira (2003) proposed a novel approach

to partition the sufficient statistic in an IV regression model into two independent parts, which are

then used to construct most of the commonly used test statistics. I show that this approach can be

adapted to model (1.5) as well. To be specific, under the null hypothesis H0 : (τ, τ ′)T = (τ0, τ
′
0)T ,

two random vectors Sn and Tn are defined as

STn = W T
n B0(BT

0 ΩnB0)−
1
2 ,

T Tn = W T
n Ω−1

n A0(AT0 Ω−1
n A0)−

1
2 ,

with B0 and A0 defined under the null hypothesis,

B0 =



1 0

0 1

−τ0 −τ ′0

0 −τ0


, A0 =



τ0 0

τ ′0 τ0

1 0

0 1


.

By construction, Sn and Tn are normalized for later convenience as in Andrews et al. (2006). I

also define matrices B and A in a way similar to B0 and A0, but with τ0 and τ ′0 replaced by true

parameters τ and τ ′. Note that the construction of B0 and A0 in this chapter is different from

that in the weak IV literature, mainly because the parameters of interest in model (1.5) show up

in both the first two equations. Each column of B0 is orthogonal to each column of A0, hence

[B0(BT
0 ΩnB0)−

1
2 : Ω−1

n A0(AT0 Ω−1
n A0)−

1
2 ] is a nonsingular square matrix. As a result, Sn and Tn

7Any other statistics calculated from it cannot provide additional information as to the value of parameters.
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are also sufficient statistics equivalent to Wn because there exists one-to-one mapping between

them: W T
n = [STn : T Tn ][B0(BT

0 ΩnB0)−
1
2 : Ω−1

n A0(AT0 Ω−1
n A0)−

1
2 ]−1. Most importantly, Sn and Tn

are jointly normally distributed with zero correlation and thus independent. These properties are

summarized in Lemma 1.1.

Lemma 1.1. For the model in (1.5):

(a) Sn and Tn are sufficient statistics for θ = (τ, τ ′,Π,Π′)T .

(b) Sn ∼ N
(
(BT

0 ΩnB0)−
1
2 (B0 − B)Tµ, I2

)
, Tn ∼ N

(
(AT0 Ω−1

n A0)−
1
2AT0 Ω−1

n µ, I2

)
; Sn and Tn are

independent.

Though with subscript “n”, the proof of Lemma 1.1 does not rely on asymptotics n → ∞. In

other words, Lemma 1.1 is valid for all n regardless of the true values of parameters. Under the

null hypothesis, the statistic Sn follows standard multivariate normal distribution. This is because

B0 − B = 0 under the null hypothesis. However, the statistic Tn has a distribution depending on

nuisance parameters Π and Π′ under both null and alternative hypotheses. Let ψ(Sn, Tn,Ωn, τ0, τ
′
0)

be a continuous statistic for testing H0, the most straightforward way to achieve a similar test at

level α ∈ (0, 1) is to reject H0 whenever ψ exceeds a critical value cψ defined by the 1− α quantile

of its null distribution. However, the null distribution of ψ is generally unknown (unless Tn is not

involved) and the performance of asymptotic approximation crucially depends on values of Π and

Π′. Following the conditioning idea (Moreira, 2003), the exact null distribution of ψ conditioning

on Tn is attainable because Sn is standard multivariate normal and independent with Tn. As a

result, I define the critical value

cψ(Tn,Ωn, τ0, τ
′
0, α) = qα

(
ψ(Q,Tn,Ωn, τ0, τ

′
0)|Tn

)
with Q ∼ N(0, I2),

where qα(·) denotes the 1−α quantile of a random variable. Intuitively, if the critical value is fixed,

it must be the case that the test statistic has a pivotal distribution. Otherwise the test statistic has

a varying distribution and the critical value must be adjusted accordingly. Many widely used test

statistics are based on Sn and Tn. I focus on the Anderson-Rubin (AR) test (Anderson and Rubin,
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1949), the Lagrange multiplier (LM) test (score test) (Kleibergen, 2002; Moreira, 2002) and the

conditional likelihood ratio (CLR) test (Moreira, 2003) because they are widely used in empirical

studies.

The Anderson-Rubin test. The AR statistic is the square of Sn,

AR0 = STn Sn,

which follows chi-squared distribution with two degrees of freedom and is consequently pivotal.

With a fixed critical value cAR(Tn,Ωn, τ0, τ
′
0, α) = qα(χ2

2), a test which rejects H0 when AR0 >

cAR(Tn,Ωn, τ0, τ
′
0, α) is similar at level α.

Though AR0 is a statistic for testing τ = τ0 and τ ′ = τ ′0 jointly, with slight modification it can

also be used to test τ = τ0 only, which is of primary interest in many cases. For example, a statistic

can be constructed by replacing B0 with its first column only to serve this purpose, i.e.,

ARj0 =
(W T

n B
j
0)2

(Bj
0)TΩnB

j
0

with Bj
0 = (1, 0,−τ0, 0)T ,

resulting in a statistic equivalent to the null-restricted statistic proposed by Feir et al. (2016).

Analogously, in the case of fuzzy RK design with a discontinuity in slope, one can construct a

statistic by replacing B0 with its second column only, with τ ′0 set to zero,8 i.e.,

ARk0 =
(W T

n B
k
0 )2

(Bk
0 )TΩnBk

0

with Bk
0 = (0, 1, 0,−τ0)T .

The statistic ARk0 works similarly to ARj0 but draws on information from a kink in treatment

probability at the threshold. In both cases, statistics ARj0 and ARk0 are random variables following

chi-squared distribution with one degree of freedom and thus the critical value is qα(χ2
1).

The Lagrange multiplier test. The conventional LM statistic is a quadratic form of the

score with respect to the information matrix and has a non-pivotal distribution under the null.

Kleibergen (2002) proposed a new LM statistic (also known as the K-statistic) which equals a

quadratic form of the score of the concentrated log-likelihood. In the context of fuzzy RD designs,

8The third equation in system (1.4) is dropped because it does not provide any identification power in the case
Π = 0.
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it can be shown that the score is

STn (BT
0 ΩnB0)−

1
2 Π̂ with Π̂ =

 Π̂ 0

Π̂′ Π̂

 ,

where (Π̂, Π̂′)T = T Tn (AT0 Ω−1
n A0)−

1
2 is the maximum likelihood estimator of (Π,Π′) under H0. The

LM statistic is a quadratic of the score:

LM0 = STn (BT
0 ΩnB0)−

1
2 Π̂
(
Π̂
T

(BT
0 ΩnB0)−1Π̂

)−1
Π̂
T

(BT
0 ΩnB0)−

1
2Sn.

Notice that Π̂ is almost surely invertible, hence the LM statistic is reduced to

LM0 = STn Sn,

which is exactly the same as the AR statistic. As a result, the critical value of the LM test is fixed

at cLM (Tn,Ωn, τ0, τ
′
0, α) = qα(χ2

2).

The Likelihood ratio test. For a given sample, a large difference in its likelihood with and

without imposing the null hypothesis provides evidence against this hypothesis. For model (1.5),

the likelihood ratio statistic is

LR0 = STn Sn − min
(τ,τ ′)∈R2

W T
n B(BTΩnB)−1BTWn,

where the first part corresponds to the null-restricted likelihood and the second part corresponds

to the unrestricted likelihood. At first look, the calculation of LR0 involves optimization over the

space of R2 to search for τ and τ ′ which minimize W T
n B(BTΩnB)−1BTWn. A closer look at this

optimization problem shows that a minimum of zero is always reachable because W T
n B = 0 consists

of two equations and two free variables and thus a solution always exists. Hence one can conclude

that

LR0 = STn Sn, (1.6)

and the critical value of the LR test is again cLR(Tn,Ωn, τ0, τ
′
0, α) = qα(χ2

2).

To summarize, when the null hypothesis is H0 : (τ, τ ′)T = (τ0, τ
′
0)T , the three test statistics

AR0, LM0 and LR0 are equivalent and follow chi-squared distribution with two degrees of freedom.

This conclusion is consistent with previous findings on their equivalence in the just identified case

(Kleibergen, 2002; Moreira, 2003).
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1.2.3 Over identification with known treatment effect derivative

It is widely known that the AR test is inefficient in cases of over identification because the

degrees of freedom of its (limiting) distribution is always equal to the number of instruments. This

is a natural result from the fact that the AR statistic is obtained by projecting the disturbances

of the structural equation on all instruments. However, this drawback is not shared by the LM

statistic and the LR statistic.

This subsection considers a case where τ is of primary interest and additional information on τ ′

is available (or assumed). For example, if τ ′ is known, then τ can be identified from a discontinuity

either in level or slope. This is empirically relevant because assumptions on τ ′, depending on the

context, are sometimes legitimate. For example, in estimating the potential crowd out effect of the

Pell Grant on the institutional grant aid, Turner (2017) assumed that one dollar of Pell Grant has

constant effect on the institutional grant aid at the margin of Pell Grant eligibility, i.e., τ ′ = 0.

Besides taking specific assumed values, τ ′ can also be restricted in a region, which is sometimes

convincing. For example, in estimating the effect of class size on test scores in Israeli public schools

(Angrist and Lavy, 1999), one may be willing to assume ττ ′ ≤ 0 because the marginal treatment

effect (the effect of one more student on average test scores) decreases in magnitude with the

treatment intensity (class size).

I proceed by assuming τ ′ is known. Under this assumption, the parameter τ ′0 in the matrices

A0 and B0 is replaced by τ ′, and statistics Sn and Tn are updated accordingly. The null hypothesis

is reduced to H0 : τ = τ0.

The Anderson-Rubin test. The AR statistic in the over identified case has exactly the same

formula as in the just identified case:

AR∗0 = STn Sn.

Consequently AR∗0 has the same null distribution and critical value as AR0.

The Lagrange multiplier test. The LM statistic in the over identified case is different from

that in the just identified case because one only needs to take derivative of the log likelihood with



www.manaraa.com

16

respect to τ , resulting a LM statistic as follows:

LM∗0 =

(
STn (BT

0 ΩnB0)−
1
2 (Π̂, Π̂′)T

)2
(Π̂, Π̂′)(BT

0 ΩnB0)−1(Π̂, Π̂′)T
.

Unlike the AR∗0 statistic, LM∗0 projects disturbances from structural equation on an IV estimate

of the endogenous variable instead of all instruments (Kleibergen, 2002). Due to the one-to-one

mapping between (Π̂, Π̂′) and Tn, (Π̂, Π̂′) is also independent with Sn and LM∗0 consequently has

a pivotal distribution with one degree of freedom.

The Likelihood ratio test. The LR statistic in the over identified case is no longer equivalent

to the AR statistic because its second part, W T
n B(BTΩnB)−1BTWn, can no longer always achieve

a minimum of zero due to additional identifying restrictions. Specifically, the LR statistic is

LR∗0 = STn Sn −min
τ
W T
n B(BTΩnB)−1BTWn.

The distribution of LR∗0 is not pivotal. As a result, the approach of conditioning can be employed

to make sure a test based on LR∗0 remains similar. The key to a similar test at level α following this

approach is to obtain a critical value defined by the 1− α quantile of the null distribution of LR∗0

conditioning on the observed statistic Tn. I propose numerically approximating this distribution

by repeatedly computing

LR∗0 = QTQ−min
τ
W̃ T
n B(BTΩnB)−1BT W̃n,

with

W̃ T
n = [QT : T Tn ][B0(BT

0 ΩnB0)−
1
2 : Ω−1

n A0(AT0 Ω−1
n A0)−

1
2 ]−1,

where Tn is fixed at its observed value and Q is drawn from the null distribution of STn , i.e., Q ∼

N(0, I2). The critical value for the CLR test cCLR(Tn,Ωn, τ0, τ
′
0, α) is then defined by the 1−α quan-

tile of this empirical distribution. The test that H0 is rejected when LR∗0 > cCLR(Tn,Ωn, τ0, τ
′
0, α)

is similar at level α.

The discussion above shows that one can take advantage of both jump and kink to test τ = τ0,

given that τ ′ takes a(n) known/assumed value. This test is similar and in general more powerful

than tests which make use of the jump only. In the case where it is too strong to assume τ ′ takes
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a specific value, it might be reasonable to constrain τ ′ within a certain range, i.e., τ ′ ∈ Sτ ′ ⊂ R.

Then one can perform joint test for (τ, τ ′) and then use projection method (Dufour, 1997) to test

τ only. To be specific, a test which rejects τ = τ0 when (τ, τ ′) = (τ0, τ
′
0) is rejected for all τ ′0 ∈ Sτ ′

will have correct size, though it is no longer similar. On one hand, the projection method preserves

correct size at the sacrifice of power. On the other hand, the extra information that τ ′ ∈ Sτ ′ ⊂ R

increases the the power of testing τ . Combining these two facts, it is possible that using projection

method, together with a reasonable constraint that τ ′ ∈ Sτ ′ ⊂ R, will lead to a test for τ = τ0

more powerful than ARj0.

1.2.4 Estimation

The sufficient statistics and robust tests introduced in the above section are based on observable

Wn and a known variance Ωn. In practice, however, both Wn and Ωn are not directly available in

fuzzy RD designs. In this section, I show that those robust tests remain asymptotically valid when

Wn and Ωn are replaced by their estimators.

Non-parametric regressions have been widely used as standard methods in RD designs since

early studies by Hahn et al. (2001) and Porter (2003). One important feature of non-parametric

regressions is the choice of polynomial order and bandwidth, with both having a direct effect on

the quality of estimators. For example, the trade-off between bias and variance is unavoidable and,

when improperly managed, may lead to invalid distributional approximations for test statistics even

asymptotically. Though there has been lots of studies on choosing polynomial order and bandwidth

(see a list of studies in the introduction section), I provide a brief description of the estimation

procedures based on the findings from Calonico et al. (2014). In particular, for the purpose of

illustration, I focus on local linear models and discuss the requirement for data generating process

(DGP) around the threshold and the bandwidth selector.

Additional assumptions regarding to the DGP around the threshold and the assumption on

kernel function are listed as follows:
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Assumption 1.2. For some ε > 0, the following hold in the neighborhood (−ε, ε) around the

threshold x̄ = 0:

(a) E(Y 4
i |Xi = x) is bounded.

(b) E(Yi|Xi = x) and E[Ti|Xi = x] are three times continuously differentiable excluding x = 0.

(c) The kernel function K(·) is positive, bounded and continuous on the interval (−κ, κ) and zero

outside that interval for some κ > 0.

It is worth noting that the smoothness condition in Assumption 1.2(b) is different from that in

Assumption 1.1(b) and neither is nested in the other. While Assumption 1.1(b) is crucial for the

validity of model (1.5), Assumption 1.2(b) is necessary for estimation because we are approximating

Taylor expansions (up to the second order) at the threshold by local polynomials. Bounded fourth

moment of the outcome and binary treatment ensure that estimands from local polynomial models

are well behaved.

The estimation for each element in Wn is similar: it is the difference of coefficients from local

linear models on each side of the threshold. With kernel function K(·) and bandwidth h, the

following shorthand notations are employed:9

K+,h(x) =
1

h
K
(x
h

)
1(x ≥ 0), K−,h(x) =

1

h
K
(x
h

)
1(x < 0),

µZ+(x) = E(Zi|Xi = x ≥ 0), µZ−(x) = E(Zi|Xi = x < 0),

µ
(η)
Z+(x) =

dηµZ+(x)

dxη
, µ

(η)
Z−(x) =

dηµZ−(x)

dxη
,

µ
(η)
Z+ = lim

x→0+
µ

(η)
Z+(x), µ

(η)
Z− = lim

x→0−
µ

(η)
Z−(x),

where Z is a placeholder for either Y or T . I further introduce another placeholder • denoting

either “ + ” or “ − ” to simplify the notation. Let hZ,0 and hZ,1 be the bandwidth for estimating

9The DGP and estimation are independent on the left and right side of the threshold. Thus, there is no restriction
of using different kernel function and bandwidth on the two sides. For expository purpose, I use the same kernel
function and bandwidth in this section.
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µZ• and µ
(1)
Z• respectively. Their estimators are obtained by solving the following problems:

µ̂Z•(hZ,0) = arg min
β0

min
β1

n∑
i=1

(Zi − β0 −Xiβ1)2K•,hZ,0(Xi),

µ̂
(1)
Z•

(hZ,1) = arg min
β1

min
β0

n∑
i=1

(Zi − β0 −Xiβ1)2K•,hZ,1(Xi).

The bandwidth which minimizes the asymptotic mean squared errors (MSE) of a point estima-

tor, such as µ̂Z•(hZ,0) or µ̂
(1)
Z•

(hZ,1), are widely used since they are theoretical grounded and easy

to compute (Imbens and Kalyanaraman, 2012). Designed for point estimation, this MSE-optimal

bandwidth may not be the best option to serve the purpose of statistic inference. Both Hahn et al.

(2001) and Porter (2003) derived asymptotic distributions for RD estimators and showed that the

bias is non-negligible if the MSE-optimal bandwidth is adopted. It can be expected that to target

at a minimum MSE leads to variance and squared bias which are of the same order. To address this

problem, one can either use a bandwidth smaller than the MSE-optimal one (under smoothing) or

explicitly correct the bias. The former is straightforward in intuition because a smaller bandwidth

induces less bias and more variability. However, it is also less user-friendly because there is no

widely accepted theoretical guidance in choosing the bandwidth. The latter is more flexible in

terms of bandwidth choices (MSE-optimal bandwidth are allowed) and is shown to have a faster

shrinking speed of coverage error rate (Calonico et al., 2017) than under smoothing. The bias can

be estimated from

E[µ̂Z•(hZ,0)]− µZ• = B•,0µ
(2)
Z•
h2
Z,0

(
1 + op(1)

)
,

E[µ̂
(1)
Z•

(hZ,1)]− µ(1)
Z•

= B•,1µ
(2)
Z•
hZ,0

(
1 + op(1)

)
,

where B•,0 and B•,1 are known constants depending on the running variable and kernel function.

With hZ,2 being another bandwidth, one can estimate µ
(2)
Z•

through a local quadratic model in a

way similar to µZ• and µ
(1)
Z•

,

µ̂
(2)
Z•

(hZ,2) = arg min
β2

min
β0,β1

n∑
i=1

(Zi − β0 −Xiβ1 −X2
i β2)2K•,hZ,2(Xi),
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and then use µ̂
(2)
Z•

(hZ,2) to remove the biases in µ̂Z•(hZ,0) and µ̂
(1)
Z•

(hZ,1). I use the differences of

bias-corrected estimates to construct Ŵn = (∆̂Yn , ∆̂Y ′n , ∆̂Tn , ∆̂T ′n)T , where

∆̂Z = µ̂Z+(hZ,0)− µ̂Z−(hZ,0)−
(
B+,0µ̂

(2)
Z+

(hZ,2)−B−,0µ̂(2)
Z−

(hZ,2)
)
h2
Z,0,

∆̂Z′ = µ̂
(1)
Z+

(hZ,1)− µ̂(1)
Z−

(hZ,1)−
(
B+,1µ̂

(2)
Z+

(hZ,2)−B−,1µ̂(2)
Z−

(hZ,2)
)
hZ,1.

Due to bias correction, the variance of Ŵn differs from that of the original biased estimator. Let

Ω̂n be the estimator for V(Ŵn).10 The properties of these estimators are summarized below:

Lemma 1.2. Let Assumption 1.2 hold. If nmin{h5
Z,0, h

5
Z,2}max{h2

Z,0, h
2
Z,2} → 0,

nmin{h5
Z,1, h

5
Z,2}max{h2

Z,1, h
2
Z,2} → 0 and nmin{hZ,0, hZ,1, hZ,2} → ∞, then

(Ŵn − µ)Ω̂
− 1

2
n (Ŵn − µ)T →d N(0, I4),

provided that κmax{hZ,0, hZ,1, hZ,2} < ε.

Lemma 1.2 is a natural extension of Theorem 1 in Calonico et al. (2014), who proved the asymp-

totic normality of bias-corrected sharp RD estimators. Since Ŵn is a vector of four bias-corrected

sharp RD estimators, its joint normality can be established through Cramér-Wold theorem. As is

emphasized by Calonico et al. (2014), Lemma 1.2 accommodates a wide range of bandwidths, in-

cluding the MSE-optimal bandwidths. With estimators Ŵn and Ω̂n, the feasible sufficient statistics

are defined as ŜTn = Ŵ T
n B0(BT

0 Ω̂nB0)−
1
2 and T̂ Tn = Ŵ T

n Ω̂−1
n A0(AT0 Ω̂−1

n A0)−
1
2 , which are then used

to construct test statistics as well as critical values.

Theorem 1.1. Let Assumptions 1.1 and 1.2 hold. Choose a sequence {Ωn} such that V(Ŵn) −

Ωn →p 0, then

(a) (Ŝn, T̂n)→d (Sn, Tn),

(b)
(
ψ(Ŝn, T̂n, Ω̂n, τ0, τ

′
0), cψ(T̂n, Ω̂n, τ0, τ

′
0, α)

)
→d

(
ψ(Sn, Tn,Ωn, τ0, τ

′
0), cψ(Tn,Ωn, τ0, τ

′
0, α)

)
,

(c) Under the null hypothesis, Pr
(
ψ(Ŝn, T̂n, Ω̂n, τ0, τ

′
0) > cψ(T̂n, Ω̂n, τ0, τ

′
0, α)

)
→p α.

10Its formula is straightforward but lengthy and thus left to the appendix.
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Part (a) of Theorem 1.1 states that the joint distribution of feasible sufficient statistics con-

verges to that of infeasible sufficient statistics. It is the key conclusion because, together with the

continuous mapping theorem, it is sufficient for part (b) and part (c). This establishes that the AR

test, the LM test and the CLR test are exactly similar for model (1.5) with infeasible Sn and Tn.

Theorem 1.1 guarantees that tests based on proper estimators of Sn and Tn are still asymptotically

similar.

1.3 Discussion and Extension

1.3.1 Alternative implementation of AR test

The idea behind the AR test in a conventional setting is to check whether the residuals from

structural equations under the null hypothesis are orthogonal to instrumental variables. In the

context of fuzzy RD designs, the instrument is valid only at the threshold and the orthogonality

condition reduces to continuity condition. As a result, the following lemma holds:

Lemma 1.3. Let Assumption 1.1 hold. Define Y ∗i = Yi − (τ0 + τ ′0Xi)Ti. Then E(Y ∗i ) and

∂E(Y ∗i |Xi=x)
∂x are continuous at x = 0 under the null hypothesis.

It is straightforward to see that ARj0 is designed to test the continuity of E(Y ∗i ), ARk0 is designed

to test the continuity of
∂E(Y ∗i |Xi=x)

∂x and AR0 is designed for a joint test. In other words, Lemma

1.3 is an alternative presentation of the model (1.5). However, Lemma 1.3 implies a much simpler

approach to perform the AR test: one just need to calculate Y ∗i first and then test its smoothness.

Any evidence for the existence of a jump or kink in Y ∗ signals the violation of the null hypothesis.

In other words, for inferential purpose, a fuzzy RD design is transformed into a sharp RD design

once Y ∗i , rather than the original Yi, is used as the outcome.

1.3.2 Test quantile treatment effect

I next show that the test discussed above for average treatment effects can be adapted to one

type of quantile treatment effects with slightly different assumptions.11 These two cases share

11See Frandsen et al. (2012); Chiang and Sasaki (2016) for previous studies.
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similar ideas, which is to firstly remove the treatment effects and then check smoothness of the

outcome at the threshold. To start with, I define the quantile treatment effect as

τ(p) = y(1, x, p)− y(0, x, p)|x=0, p ∈ (0, 1), (1.7)

where y(Ti, Xi, p) = qp
(
Yi(Ti)|Xi

)
is the conditional pth quantile of potential outcome and τ(p) is

the difference between two pth quantiles at the threshold with and without treatment. Specifically,

τ(p) is the parameter of interest under the context of regression discontinuity. It is worth noting

that τ(p) is in general not informative about the distribution of heterogeneous treatment effects

Yi(1)−Yi(0). However, with certain assumptions such as rank similarity, it measures the treatment

effect for subjects at the pth quantile of the outcome. Formally, I adopt assumptions similar to

Chernozhukov and Hansen (2005) and study their implications on identifying and testing quantile

treatment effects in fuzzy RD designs.

Assumption 1.3. Let Ui(·) be the percentile of subject i in the distribution of the outcome if every

unit has treatment status indicated by ·. Let Ui = TiUi(1) + (1 − Ti)Ui(0). For some ε > 0, the

following hold in the neighborhood (−ε, ε) around the threshold x̄ = 0:

(a) No discrete response. Given (Ti, Xi), the outcome Yi ≡ y(Ti, Xi, Ui) is strictly increasing in

Ui and Ui ∼ U(0, 1).

(b) Rank similarity. Given Xi and unobservable Wi, Ti ≡ t(Xi,Wi) and Ui(1) ∼ Ui(0).

Assumption 1.3(a) requires a one-to-one mapping from the quantile Ui to the outcome Yi given

any (Ti, Xi). This condition does not necessarily imply a continuous outcome variable but there

should be no non-zero probability mass on the support of Yi. The fact that Ui ∼ U(0, 1) is not

restrictive due to the Skorohod representation of random variables. Assumption 1.3(b) imposes

rank similarity conditional on factors determining treatment status. This condition is somewhat

weaker than the rank invariance condition, which states that ranks do not change under different

treatments. Assumption 1.3(b) allows unsystematic variation in ranks under different treatments

conditional on (Xi,Wi).
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Similar to τ ′, I define τ ′(p) as the first order derivative of the quantile treatment effect with

respect to the running variable.12 With null hypothesis H0 :
(
τ(p), τ ′(p)

)
=
(
τ0(p), τ ′0(p)

)
, Lemma

1.4 summarizes findings on smoothness at the threshold, which can be used to construct similar

tests.

Lemma 1.4. Let Assumptions 1.1 and 1.3 hold.

(a) The quantile function y(·, x, p) and its derivative ∂y(·,x,p)
∂x are continuous at x = 0.

(b) Define Y ∗i = Yi −
(
τ0(p) + τ ′0(p)Xi

)
Ti, then qp(Y

∗
i |Xi = x) and its derivative

dqp(Y ∗i |Xi=x)
dx are

continuous at x = 0 under the null hypothesis.

Lemma 1.4(a) establishes the smoothness of the quantile function at the threshold, which is

stronger than the smoothness of expectation used in estimating mean treatment effects. Lemma

1.4(b) is analogous to Lemma 1.3 and can be used to construct tests robust to weak identification.

For example, one can employ local quantile regression to obtain the quantiles and their derivatives

for Y ∗i at the threshold. To test the null is equivalent to test whether the differences in quantiles

or derivatives on two sides of the threshold are significantly different zero.

1.4 Monte Carlo Simulations

1.4.1 Comparison of size and power

I compare the size and power of a series of tests, including the standard t test and the newly

proposed robust tests, through simulations from the following DGP:

Xi ∼ U(−1, 1),

Ti = 1[Xi ≥ 0](d0 + d1Xi) + v,

Yi = τTi + u,

(1.8)

12Formally, this derivative is defined as

τ ′(p) =
∂
(
y(1, x, p)− y(0, x, p)

)
∂x

∣∣∣∣∣
x=0

.
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where v and u are jointly standard normal with correlation ρ, d0 and di are the jump and kink

at the threshold, and τ is a constant treatment effect.13 The primary reason to adopt a very

simple DGP like (1.8) is to isolate the confounding effects from choices of local polynomial orders

and bandwidths.14 In particular, I adopt local linear regressions with a fixed bandwidth of one to

estimate Wn and Ωn, i.e., the whole sample will be used and the estimators are unbiased. With this

setup, it is straightforward to theoretically derive the distribution of Wn = (∆Yn ,∆Y ′n ,∆Tn ,∆T ′n)

when the sample size is n:

Wn ∼ N

(d0τ, d1τ, d0, d1),
8

n

 τ2 + 2τρ+ 1 τ + ρ

τ + ρ 1

⊗
 2 −3

−3 6


 . (1.9)

I pick n = 100, τ = 1 and choose different sets of (d0, d1) to control for concentration parameters

Υ and Υ′. Since the distribution of Wn given by (1.9) is always exact and does not rely on large

“n”, it is expected that robust tests based on (1.9) are also exactly similar.

Table 1.1 reports the probabilities of rejecting the null hypothesis H0 : τ = 1 for various tests at

nominal level of 5% based on 2000 replications. The results are divided into three panels. From the

top to the bottom, the identification strength ranges from very weak identification (Υj = Υk = 1)

to very strong identification (Υj = Υk = 100). In each panel, results for cases of zero correlation

(ρ = 0), negative correlation (ρ = −0.9) and positive correlation (ρ = 0.9) are reported. A total of

seven tests are considered. The tests tj and tk are standard t tests for fuzzy RD design and fuzzy

RK design respectively. The test ARj is the robust version of tj (also used in Feir et al. (2016))

and the test ARk is the robust version of tk. The remaining three tests, AR, LM and CLR, are

conducted by assuming a known τ ′, which is zero in the DGP of (1.8). Except for the standard t

tests, the other five tests have been theoretically shown to be robust to weak identification. Results

from numerical simulations confirm this conclusion. In Table 1.1, a valid test should reject the

13Assumption 1.1 requires a binary treatment variable. Besides the fact that binary treatments are popular, the
main purpose of this condition is to make sure the outcome is additive and linear in the treatment without imposing
further restrictions on functional forms. Since the outcome is already assumed to be additive and linear in the
treatment in DGP (1.8), it is not necessary for the treatment to be binary.

14The bandwidth choice partially determines the concentration parameter and, together with the curvature of
E(Ti) and E(Yi), has an effect on the magnitude of bias. Differences in bandwidth and bias are confounding factors
in evaluating the performance of different tests.
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null with a probability of 5% regardless of the identification strength, which is exactly the case for

robust tests such as ARj , ARk, AR, LM and CLR. On the contrary, the rejection probabilities

for tj and tk are very different from 5% unless the identification is very strong (the bottom panel).

In the case of weak identification (the top and middle panels), tests tj and tk underreject the null

when ρ = 0 and overreject the null when ρ = ±0.9. Additional simulation results are available in

the appendix where the nominal level is set to 5% (See Table A.1). Results from these two tables

also show that the size distortion of standard t tests is more obvious when the identification is

weaker. Take tj as an example, its actual size can be as large as 16.8% when the nominal size is

5%, and can be as large as 21.4% when the nominal size is 10%.

Table 1.1: Percent Rejected under H0 : τ = 1 at Nominal Level of 5%

ρ tj tk ARj ARk AR LM CLR

Panel A: Υj = Υk = 1

0.0 0.0 0.0 5.2 5.0 5.3 5.4 5.0

-0.9 16.8 15.6 5.1 5.2 4.8 5.0 5.1

0.9 15.3 15.4 4.8 5.4 4.5 4.7 3.4

Panel B: Υj = Υk = 10

0.0 1.3 1.6 4.9 5.1 5.2 5.4 5.3

-0.9 8.2 8.3 5.2 4.8 4.8 4.8 4.9

0.9 8.2 7.5 4.8 5.1 4.8 5.0 4.9

Panel C: Υj = Υk = 100

0.0 3.5 4.4 3.7 4.8 4.8 5.1 5.2

-0.9 4.5 5.9 4.8 5.1 5.0 5.0 5.0

0.9 5.2 5.3 5.1 5.1 6.2 5.4 5.5

Though all the robust tests demonstrate correct size in Table 1.1 and A.1. They differ in

efficiency. In the weak IV literature, it is known that the AR test usually lose some power in the

case of over identification because its degree of freedom is larger than the number of endogenous

variables. On the other hand, CLR is shown to be the most powerful one among a class of invariant

similar test (Andrews et al., 2006). These findings are expected to continue to hold in the context

of fuzzy RD designs. Figure 1.2 plots the rejection probabilities from testing a sequence of values
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(b) Υ = 1,Υ′ = 1, ρ = −0.9
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(c) Υ = 1,Υ′ = 1, ρ = 0.9
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(e) Υ = 10,Υ′ = 10, ρ = −0.9
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(f) Υ = 10,Υ′ = 10, ρ = 0.9

Figure 1.2: Power of Tests at Nominal Level of 5%

for τ . Not surprisingly, ARj and ARk have low power compared with other three tests because

they use information from jump or kink only. Among the other three test, the CLR is shown to

have more power than AR and LM .

1.4.2 Polynomial order, bandwidth and bias correction

The simulations considered in section 1.4.1 are based on known polynomial orders so that I

have the correct specification. The main motivation is to provide a “clean” assessment on tests’

performance, otherwise the comparison would become less obvious and convincing because the

choices of polynomial order and bandwidth may have different effects on different tests. Since

section 1.4.1 provides strong evidence for the validity of robust tests proposed in this chapter, I

move to more practical cases where two widely used DGPs from Lee and Card (2008) and Ludwig

and Miller (2007) are adopted. I want to show that (i) similar to standard tests, the robust
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tests rely on a match between the point estimator and its variance as well, and (ii) the choices of

polynomial order and bandwidth can be made flexible for Yi and Ti/left and right side to improve

the power of tests. While the former is well recognized by many researchers, it is still new to

robust tests (Feir et al. (2016) adopted the undersmoothing approach without proposing a specific

bandwidth selector). The latter is related to studies by Card et al. (2014) and Gelman and Imbens

(2017). Unlike them, the main purpose is to show that a proper choice of combination of different

polynomial orders and bandwidths has a potential to improve the power of robust tests, which is

an advantage not shared by the practice of estimating a fuzzy RD design through an IV regression

model.

Two DGPs are chosen for the outcomes. The first one comes from Lee (2008) (hereafter Lee2008)

and the second one comes from Ludwig and Miller (2007) (hereafter LM2007). Both these two DGPs

are intensively adopted in RD literature. However, they are for sharp RD designs. Hence, I couple

them with two additional DGPs for the treatment variables. In summary, I have a reduced form

DGP for
(
Yi, Ti, Xi

)
:

Yi = µYj (Xi) + εi,

Ti ∼ B
(
1, µTl (Xi)

)
,

Xi ∼ 2×Beta(2, 4)− 1,

εi ∼ N(0, 0.12952),

where the running variable Xi follows Beta distribution, the treatment variable Ti follows Bernoulli

distribution with mean µTl (Xi), and the outcome variable Yi follows normal distribution with mean

µYj (Xi). The subscripts j = 1, 2 and l = 1, 2 represent two different functions for the mean outcome
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and the mean treatment. The mean functions for the outcome are

Lee2008: µY1 (x) =


0.48 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 if x < 0,

0.52 + 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 otherwise.

LM2007: µY2 (x) =


3.71 + 2.30x+ 3.28x2 + 1.45x3 + 0.23x4 + 0.03x5 if x < 0,

0.26 + 18.49x− 54.81x2 + 74.30x3 − 45.02x4 + 9.83x5 otherwise.

The mean functions for the treatment are

Quintic: µT1 (x) =


(x− x3 + x5)/4 + 0.3 if x < 0,

(x− x3 + x5)/4 + 0.7 otherwise.

Linear: µT2 (x) =


0.3x+ 0.3 if x < 0,

0.3x+ 0.7 otherwise.

For the choices of polynomial order and bandwidth in estimation, I adopt three methods (M1,

M2, and M3 for short). Among them, M1 and M2 were proposed by Calonico et al. (2014). To

be specific, with M1, I choose local linear regression to estimate intercepts and local quadratic

regression to estimate slopes, with a single bandwidth which minimizes the asymptotic MSE of

sharp RD estimator for the outcome variable.15 The second method, M2, is similar to M1 except

that a single bandwidth is chosen to minimized the MSE of the fuzzy RD estimator. The third

method, M3, is inspired by findings from Card et al. (2014), which suggest that the order of

polynomial should depend on the data rather than being fixed. Following their practice, I choose

polynomial order (from 1, 2 and 3) and bandwidth jointly to minimize the asymptotic MSE of the

intercept/slope estimator, and this selection is done separately for the outcome/treatment variable

and left/right side. Since M3 is more flexible than M1 and M2, it is expected that tests based on

M3 would have more power.

15Imbens and Kalyanaraman (2012) proposed bandwidth selectors for sharp RD design and fuzzy RD design. They
argued that these two are usually similar in practice and suggested using the one for sharp RD design for simplicity.
Lee and Lemieux (2010) provided additional argument that the treatment function is usually expected to be flatter
than the outcome function around the threshold, thus the MSE optimal bandwidth for estimating the treatment
function is in general wider than the one for estimating the outcome function. Alternatively, one may want to choose
the smaller one among these two, as is suggested by Imbens and Lemieux (2008).
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Table 1.2 reports the probabilities of rejecting the null by AR, LM and CLR tests in the

over identified case.16 Since the bandwidths are chosen to minimize the asymptotic MSE of point

estimators, they may be not the best choices for statistic inference. In the first three columns of

Table 1.2, where the leading bias is not corrected, the rejection probabilities are very high for Panel

A and C (as high as 37% for a test at nominal level of 5%). After bias correction, the rejection

probabilities decrease substantially but are still well above the nominal level. This over rejection

in Panel A and C, even after bias correction, is a result of choosing large bandwidths. A closer

inspection reveals that bandwidths used in Panel A and C are much wider than those used in

Panel B and D. Since the outcome function in Panel B and D has more curvature, the bandwidth

selector responds by selecting smaller bandwidths. In addition, the bandwidths used in M2 are

larger than those in M1, which explains the higher distortion in M2. This is because the fuzzy RD

estimator has more variability than the sharp RD estimator. Thus, larger biases and consequently

larger bandwidths are allowed. Overall, both M1 and M2 do not perform well in controlling the

size of tests in Panel A and C, while M1 does a much better job and the rejection probabilities are

substantially closer to the nominal level.

Besides the actual size of tests, their power is also of interest. Figure 1.4 shows the power

curves of AR, LM and CLR tests with different methods and different DGPs.17 From the top

to the bottom, the four rows of plots in Figure 1.4 correspond to the four panels A, B, C and

D in Table 1.2. For the DGPs in Panel A and C, the power of all tests under M1, M2 and M3

are similar. In particular, with M3, all tests have less power left to the true parameter but more

power right to the true parameter. For the DGPs in Panel B and D, the power differs substantially

under M1, M2 and M3. All the three tests under consideration have the most power under M3 and

the least power under M1. The better power under M2 over that of M1 is due to larger optimal

bandwidths generated by M2. The drawback comes along with larger bandwidths is that M2 does

not consistently perform well in controlling size of tests, as is shown in Table 1.2.

16Simulation results for sample sizes of 500 and 10000 are in the Appendix.
17Similar plots for sample sizes of 500 and 10000 are in the Appendix.
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Figure 1.4: Power of Bias-corrected Tests at Nominal Level of 5% with N = 5000
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Table 1.2: Percent Rejected at Nominal Level of 5% with N = 5000

Method M1 M2 M3 M1 M2 M3

Bias correction No No No Yes Yes Yes

Test Panel A: µY1 and µT1

AR 21.4 33.8 15.3 10.3 16.0 8.4

LM 21.3 36.5 13.2 10.8 18.0 8.1

CLR 21.4 36.6 12.4 11.2 18.1 7.8

Panel B: µY2 and µT1

AR 5.8 6.6 5.9 5.4 5.1 4.2

LM 5.4 7.4 5.9 5.2 5.5 5.4

CLR 5.3 7.2 6.2 5.2 5.5 5.8

Panel C: µY1 and µT2

AR 21.1 34.4 15.8 10.3 16.0 8.2

LM 21.5 37.0 13.4 10.8 17.3 7.9

CLR 21.5 37.4 12.9 11.1 17.8 7.4

Panel D: µY2 and µT2

AR 5.5 6.3 6.3 5.6 5.6 4.5

LM 5.3 6.8 5.8 5.4 5.3 5.7

CLR 5.3 6.6 6.3 5.2 5.4 5.8

In summary, I have considered and compared three methods for estimation and statistic in-

ference in fuzzy RD designs. Among them, M1 and M2 use local liner regressions with a single

bandwidth. In this case, the estimation and inference can also be done by conventional IV regres-

sion models. The third method, M3, which has more flexibility in choosing the order of polynomial

and bandwidths, are shown to leads to tests with some desirable properties when compared with

M1 and M2. In particular, tests under M3 consistently perform well in controlling size and have

power at least on par with, if not better than, those under M1 and M2. It is worth noting that

M3 is not compatible with IV regression models. The proposed tests perfectly accommodate a

flexible choice of polynomial orders and bandwidths, thus, they have advantages over the robust

tests developed in the framework of IV regression.
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1.5 Empirical Application

In this section, I reexamine the effect of military service on education using data from Russia

Longitudinal Monitoring Survey.18 Results of both standard and weak identification robust infer-

ence are reported and compared. I show that the standard method and the proposed method yield

different results when the identification is weak (small bandwidth and few observations), but similar

results when the identification is strong (large bandwidth and many observations). In particular,

the confidence set derived from the standard method is too small in the case of weak identification,

and thus very likely to undercover the true parameter.

In the late 1980s, the end of Cold War was followed by a significant demilitarization process

in Russia. Card and Yakovlev (2014) showed that the share of Russian males who served in the

army decreased sharply after 1989 and modeled this change as a RK design. Their findings suggest

that military services increase risky behaviors such as alcohol consumption and smoking, resulting

associated chronic illness. Dong (2016) used the same data and applied the RPJK design to estimate

the effect of military services on education and earnings. Contrary to the prevailing evidence from

the US and other OECD countries, Dong (2016) found that the conscription in Russia has a negative

effect on college education.

Following Card and Yakovlev (2014) and Dong (2016), the running variable is the date when

a male turned 18, which is the official conscription age in Russia, and the threshold is January

1989. A male who turned 18 after this threshold would have smaller probability of being drawn

to the army than a male who turned 18 before this threshold. I focus the attention to males aged

30-60 in the data and their probabilities of serving the army are shown in Figure 1.6 (a).19 Figure

1.6 (a) suggests both a jump and a kink in the probability of serving in army at the threshold.

These discontinuities seem to be mirrored at the same threshold in college education, as is plotted

in Figure 1.6 (b).

18The survey data is available at http://www.cpc.unc.edu/projects/rlms-hse.
19The probability of serving in army is fitted with fourth order polynomials separately on each side of the threshold.
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Figure 1.6: Discontinuities in military service and college education

I estimate the effect of military services on education with three different designs. One is the

standard fuzzy RD design, the second is the fuzzy RK design following Card and Yakovlev (2014),

and the third is the RPJK design following Dong (2016).20 Confidence sets derived from standard

and robust tests are shown in Figure 1.8 for a wide range of bandwidths. In all the three plots,

dotted lines represent the lower and upper bounds of confidence sets derived from standard t-test.

In plot (a) and (b), where either a jump or kink is used for identification, the treatment effect is just

identified and solid lines represent the lower and upper bounds of confidence sets from inverting

a robust test. In plot (c), the treatment effect is over identified since both jump and kink are

used. The confidence set derived from the CLR test is denoted by solid lines and the confidence

set derived from the AR test is denoted by dashed lines.

Figure 1.8 shows that the standard and robust inference yield very similar results when the

identification is strong: the confidence sets from inverting a standard test and a robust test are

almost identical if the bandwidth is larger than 150, which means more data used in estimation

and stronger identification. However, when the bandwidth is small and weak identification becomes

a problem, the standard and robust inference yield significantly different results. The confidence

20Card and Yakovlev (2014) used only the kink for identification, while Dong (2016) used both jump and kink for
identification. They are all valid if the true jump is zero or the treatment effect derivative is zero.
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Figure 1.8: Confidence sets for the treatment effect in different designs

sets from inverting a standard test is a lot smaller than those from inverting a robust test. It is

worth noting that smaller confidence sets from standard inference in the case of weak identification

do not suggest that they are more informative. On the contrary, the information they provide is

not reliable because they are derived from invalid tests. In other words, the confidence sets from

standard inference are artificially small and very likely to undercover the true parameters.

1.6 Conclusion

Previous authors, e.g. Feir et al. (2016), have noted the weak identification problem in fuzzy RD

designs and proposed a null-restricted t-test. I approach the same problem by drawing insights from

the extensive literature on IV regressions. Specifically, the AR test, the LM test and the CLR test

are considered and tailored to the settings of fuzzy RD designs. Different from Feir et al. (2016), I

do not limit the attention to the most standard fuzzy RD design, where the identification only relies

on a jump in the treatment probability. I consider a more general case where the identification

relies on a jump, a kink or both in the treatment probability. Thus, the proposed tests can be

applied in a wide range of research questions. In addition, I explicitly correct the bias in estimation

rather than assume undersmoothing. As a result, a larger set of bandwidths are allowed, including

the MSE optimal bandwidth which is available in many statistic packages. Though IV regression

is an alternative option when estimating a fuzzy RD design, I still recommend the latter because
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of its flexibility in estimation. The proposed tests not only have correct size, but also have good

power properties when this flexibility is properly explored.
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CHAPTER 2. USING WILD BOOTSTRAP TO CONSTRUCT

CONFIDENCE INTERVALS IN FUZZY REGRESSION DISCONTINUITY

DESIGNS

A new wild bootstrap procedure is proposed to correct bias and construct valid confidence inter-

vals in fuzzy regression discontinuity designs. This procedure uses a wild bootstrap based on second

order local polynomials to estimate and remove the bias from linear models. The bias-corrected

estimator is then bootstrapped itself to generate valid confidence intervals. While the conventional

confidence intervals generated by adopting MSE-optimal bandwidth is asymptotically not valid, the

confidence intervals generated by this procedure have correct coverage under conditions similar to

Calonico, Cattaneo and Titiunik’s(2014, Econometrica) analytical correction. Simulation studies

provide evidence that this new method is as accurate as the analytical corrections when applied to

a variety of data generating processes featuring heteroskedasticity, endogeneity and clustering. As

an example, its usage is demonstrated through a reanalysis of the scholastic achievement data used

by Angrist and Lavy (1999).

2.1 Introduction

The idea of regression discontinuity (RD) design was first used by Thistlethwaite and Camp-

bell (1960) to estimate the causal effect of merit awards on future academic outcomes. In their

application, the discontinuity in receiving merit awards as a function of test scores (refereed to in

literature as “forcing variable” or “running variable”, which determines the treatment assignment)

creates a local randomized experiment, which allows researchers to identify the causal effect at the

point of discontinuity. The idea of RD designs did not get much attention from economists in its

early years, but the past decade has seen its increasing popularity in analyzing the causal impact



www.manaraa.com

37

of policies and interventions in social science. Imbens and Lemieux (2008) and Lee and Lemieux

(2010) provide recent reviews of this literature with many examples.

The identification in RD designs relies on the assumption that units arbitrarily close to the

cutoff are credibly similar in predetermined characteristics. Under this “smoothness” condition,

one can essentially compare units slightly above the cutoff and units slightly below the cutoff, and

the difference in outcomes can be thought of as being induced by exogenous changes in treatment,

giving it an interpretation of treatment effect. When the running variable completely determines

the treatment, the probability of being treated jumps from zero to one at the cutoff (sharp RD

designs). On the contrary, when the running variable does not entirely determine the treatment,

there are both treated and untreated units on each side of the cutoff. This treatment misassignment

was studied in a series of work by Trochim and Spiegelman (1980) and Trochim (1984) and was

called “fuzzy” RD design thereafter. Directly comparing the outcomes on both sides of the cutoff

results in an “intent-to-treat” effect but not the actual treatment effect because this difference is

contributed only by part of the units. As in a Wald formulation of the treatment effect in an

instrumental variable setting, the true treatment effect can be recovered by taking the ratio of

difference in outcomes and difference in treatment probabilities at the cutoff. Even when units are

self-selected to treatment based on anticipated gains, Hahn et al. (2001) show that this ratio can

be interpreted as the local average treatment effect (LATE) under proper assumptions.

The identification of RD designs occurs exactly at the cutoff, which unavoidably requires extrap-

olation. Established by Fan (1992) and advocated by Hahn et al. (2001), the desirable boundary

property of local linear models makes them almost standard practice in estimating RD designs. An

important tunning variable in these nonparametric models is the bandwidth h, which controls the

trade-off between bias and variance. One very popular choice of this tunning variable under the set-

ting of RD designs is the bandwidth selector proposed by Imbens and Kalyanaraman (2012), which

minimizes the asymptotic mean squared error (AMSE) of the treatment effect estimator. This

bandwidth selector has the form h = Op(n
−1/5), where n is the number of observations. However,

as is shown by Hahn et al. (2001), a bandwidth choice of h = Op(n
−1/5) leads to an asymptotic
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normal distribution of the treatment effect estimator centered at the true treatment effect plus a

non-negligible bias term. Ignoring this bias term invalidates confidence intervals based on Wald

test. Simulation studies on sharp RD designs in Calonico et al. (2014), henceforth “CCT,” also

confirm that conventional confidence intervals have empirical coverage well below their nominal

levels. As a result, it is common practice to use ad-hoc bandwidths which shrink at a rate more

than n−1/5 so that the bias term vanishes faster in a hope that the bias will not affect asymptotic

approximation.

CCT solve this problem by firstly re-centering the conventional point estimator with estimated

bias term and then rescaling it by a unconventional standard error which takes into consideration

the additional variability of the estimated bias. This approach results in a bias-corrected point

estimator which is asymptotically normal under weaker assumptions on the bandwidth choice.

Confidence intervals based on this method are accurate even when the AMSE optimal bandwidths

are used.

In this chapter, a wild bootstrap procedure is proposed as an alternative to CCT’s robust

inference method for fuzzy RD designs. It is theoretically proved that the new bootstrap procedure

is asymptotically equivalent to CCT’s and supported by simulations that it performs well with finite

sample. Compared with CCT’s analytical method, the bootstrap procedure is very straightforward

and does not require intensive analytical derivations. In addition, since the bootstrap is motivated

by mimicking the true data generating process, it has the flexibility to accommodate dependent

data by adjusting the resampling algorithm accordingly. In particular, this chapter demonstrates

how the proposed bootstrap procedure can be applied to clustered data and perform at least as

good as the analytical robust method.

The wild bootstrap procedure exploits CCT’s theoretical insight by resampling from higher order

local polynomials. In particular, the local linear models are estimated as usual for both outcome

and treatment, resulting in a conventional biased estimator. To estimate the bias, additional local

quadratic models are estimated. These second order polynomials together with the potentially

correlated residuals represent the true data generating process (DGP) for bootstrap. The bias of
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the conventional estimator from local linear models is therefore known under this bootstrap DGP

and can be calculated by averaging the error of the linear model’s estimates across many bootstrap

replications. Though the local quadratic models are also not bias free, it can be shown that its

bias converges to zero at a faster rate, fast enough that the bias of the local linear model can be

estimated and removed using the second order polynomial. This approach is described in detail

by Algorithm 2.1 and the resulting bias-corrected estimator is shown to be asymptotically normal

with mean zero in Theorem 2.1.

This bias correction procedure introduces additional variability because the bias is calculated

by assuming that local quadratic models represent the true DGP. However, these local quadratic

models also come with uncertainty because of sampling error. So an iterated bootstrap procedure

(Hall and Martin, 1988) is adopted to accommodate this additional variability: generate many

bootstrap datasets from local quadratic models and calculate bias-corrected estimate for each of

them. The resulting empirical distribution of bias-corrected estimate is then used to construct

confidence intervals. This procedure is in line with CCT’s approach, where the variance of estimated

bias term and the covariance between estimated bias and original point estimator are derived

analytically. This complex adjustment to the original variance is automatically embedded in the

iterated bootstrap. The detailed implementation steps are described in Algorithm 2.2, and the

resulting confidence intervals are shown to be asymptotically valid in Theorem 2.2.

This chapter is closely related to the work by Bartalotti et al. (2017b), who look at the robust

inference in sharp RD designs, which are special cases of RD designs. The current chapter provides

important generalization in several dimensions. First, it borrows the idea of bootstrapping IV

models and adapts that to a more general fuzzy RD design. Second, its validity is extended and

theoretically proved to any order of local polynomials and any order of derivatives of interests.

Lastly, its flexibility and capability to accommodate clustered data is discussed and confirmed by

simulation studies.

The chapter is organized as follows. Section 2.2 describes the basic fuzzy RD approach, its usual

implementation, and the CCT’s robust inference method. Section 2.3 presents the proposed boot-
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strap procedures to estimate bias and construct confidence interval. Their asymptotic properties

are discussed and summarized in two theorems. Section 2.4 provides simulation evidence that the

bootstrap procedure effectively reduces bias and generates valid confidence intervals. An extended

application to clustered data is discussed in Section 2.5. Section 2.6 demonstrates the usage of this

bootstrap procedure by applying it to the scholastic achievement data used by Angrist and Lavy

(1999). Finally, Section 2.7 concludes.

2.2 Background

This section provides additional details of identification assumptions and traditional estimation

methods in fuzzy RD designs. It also briefly introduces the robust confidence interval proposed

by CCT. Notations defined in this section and following sections are consistent with CCT where

possible to aid readers familiar with that paper.

In a typical fuzzy RD setting, researchers are interested in the local causal effect of treatment

at a given cutoff. For any unit i, a triple (Xi, Ti, Yi) is observed, where Xi is a continuous running

variable which determines treatment assignment, Ti is a binary variable which indicates actual

treatment status and Yi is the outcome. In sharp RD designs, the treatment actually received is

the same as the assigned treatment, i.e., Ti = 1(Xi ≥ c), with c being the cutoff. In fuzzy RD

designs, however, the received treatment is not a deterministic function of running variable Xi.

Instead, the probability Pr(Ti = 1 | Xi) is between zero and one in both sides but experiences a

sudden change at the cutoff. For subject i, we use Ti(1) to denote the actual treatment if assigned

to treatment group (Xi ≥ 0), and Ti(0) if assigned to the control group (Xi < 0). Analogously, we

use Yi(1) to denote the outcome if i is actually in the treatment group (when Ti = 1), and Yi(0) if

not (when Ti = 0).

In practice, the observed random sample is {
(
Yi, Ti, Xi

)
i=1,2,...,n

}, where Ti = 1(Xi ≥ 0)Ti(1) +

1(Xi < 0)Ti(0) and Yi = TiYi(1) + (1 − Ti)Yi(0), with 1(·) being the indicator function. The
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parameter of interest is

ζ =
τY
τT

=
lim
x→0+

E(Yi|Xi = x)− lim
x→0−

E(Yi|Xi = x)

lim
x→0+

E(Ti|Xi = x)− lim
x→0−

E(Ti|Xi = x)
, (2.1)

where the symbol E represents the expectation and τY and τT represent the sharp RD estimators,

i.e., difference in expectations at the cutoff. Intuitively, this is a Wald estimator in the limit where

the assigned treatment serves as an instrument. The reduced-form difference in expected outcome,

τY , reveals the “intent-to-treat” (ITT) effect. The treatment effect is recovered by dividing ITT

effect by the first stage difference in treatment probabilities. When the treatment effect is not

constant across units, ζ should be interpreted with caution. If treatment status is independent

of treatment effects at the cutoff, ζ is the average treatment effect (ATE) at the cutoff. This

assumption rules out self-selection based on anticipated gain. Hahn et al. (2001) show that under

a less restrictive assumption that the running variable is independent of the joint distribution of

treatment effect and treatment status at the cutoff, the local average treatment effect (LATE) is

identified.

The formula for ζ shows that it is a ratio of two sharp RD estimators. Due to this symmetry, I

use “Z” as a placeholder for either outcome variable Y or treatment variable T to ease the notation.

In addition, I introduce conditional expectations µZ+(x) and µZ−(x), conditional variances σ2
Z+(x)

and σ2
Z−(x), the ηth order derivative of conditional expectations µ

(η)
Z+(x) and µ

(η)
Z−(x) and their

limits. Formally, they are defined as

µZ+(x) = E(Zi(1) | Xi = x) µZ−(x) = E(Zi(0) | Xi = x)

σ2
Z+(x) = V(Zi(1) | Xi = x) σ2

Z−(x) = V(Zi(0) | Xi = x)

µ
(η)
Z+(x) =

dηµZ+(x)

dxη
µ

(η)
Z−(x) =

dηµZ−(x)

dxη

µ
(η)
Z+ = lim

x→0+
µ

(η)
Z+(x) µ

(η)
Z− = lim

x→0−
µ

(η)
Z−(x)

where the symbol V(·) represents variance. The treatment effect ζ is nonparametrically estimable

because µZ− and µZ+ can be estimated consistently under Assumption 2.1, which lists standard

conditions in the fuzzy RD literature. (See, in particular, (Hahn et al., 2001), (Porter, 2003) and

CCT.)
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Assumption 2.1 (Behavior of the DGP near the cutoff). The random variables {Xi, Ti, Yi}ni=1 form

a random sample of size n. There exists a positive number κ0 such that the following conditions

hold for all x in the neighborhood (−κ0, κ0) around zero:

1. The density of Xi is continuous and bounded away from zero at x.

2. E[Z4
i | Xi = x] is bounded.

3. µZ−(x) and µZ+(x) are three times continuously differentiable.

4. σ2
Z−(x) and σ2

Z+(x) are continuous and bounded away from zero.

5. µT−(0) 6= µT+(0).

Part 1 ensures that the number of data points arbitrarily close to the cutoff increases as the

sample size grows. Part 3 imposes necessary smoothness condition to allow an approximation by

second order polynomials. Part 2 and 4 put standard restrictions on moments to ensure that the

estimated local polynomials are well behaved. Part 5 requires that the treatment assignment as an

instrument is valid, in the sense that it induces a first stage difference in treatment probability. In

practice, local polynomial regression is widely used to estimate RD designs because of nice boundary

properties.1 As an illustration, I focus here on local linear regression using kernel function K(·).

For simplicity, suppose a common bandwidth, h, is chosen for both the outcome and the treatment,

the estimated treatment effect is

ζ̂(h) =
τ̂Y (h)

τ̂T (h)
=
µ̂Y+(h)− µ̂Y−(h)

µ̂T+(h)− µ̂T−(h)
, (2.2)

with

µ̂Z+(h) = arg min
β0

min
β1

n∑
i=1

1{Xi ≥ 0}(Zi − β0 −Xiβ1)2 1

h
K(

Xi

h
)

and

µ̂Z−(h) = arg min
β0

min
β1

n∑
i=1

1{Xi < 0}(Zi − β0 −Xiβ1)2 1

h
K(

Xi

h
).

1See Fan and Gijbels (1996) for discussions on the boundary properties of local polynomial regression. See Gelman
and Imbens (2017) for discussions on the choices of global and local polynomial regression and its order.
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The conditional expectations µZ+ and µZ− are consistently estimated by µ̂Z+(h) and µ̂Z+(h)

when h → 0.2 The asymptotic distribution of the quotient estimator τ̂Y (h)
τ̂T (h) can be derived by

applying the delta method. Let VZ be the asymptotic variance of τ̂Z(h) and CY T be the asymptotic

covariance between τ̂Y (h) and τ̂T (h), i.e., √nh(τ̂Y (h)− τY )
√
nh(τ̂T (h)− τT )

→d N


 0

0

 ,

 VY CY T

CY T VT


 ,

then it follows that

√
nh(ζ̂(h)− ζ)→d N(0,

1

τ2
T

VY −
2τY
τ3
T

CY T +
τ2
Y

τ4
T

VT ).

Let V (h) = V(ζ̂(h) | X1, ..., Xn), then ζ̂(h)−ζ√
V (h)

→d N(0, 1) and the confidence intervals can be

constructed as

ζ̂(h)± q1−α/2V (h)1/2 (2.3)

where q1−α/2 is the 1− α/2 quantile of the standard normal distribution.

The above asymptotic distribution is valid only when bandwidth h shrinks fast enough such

that the bias of ζ̂Z(h) is negligible relative to
√
V (h). Formally, h = op(n

−1/5) is required. With a

bandwidth of order Op(n
−1/5), Hahn et al. (2001) show that the asymptotic distribution is normal

but not centered at zero. Using (2.3) to construct confidence intervals without considering this first-

order bias in distributional approximation leads to a coverage rate lower than the nominal level.

Imbens and Kalyanaraman (2012) develop plug-in bandwidth selector for RD estimators, which is

optimal in the sense that squared error loss of the point estimator is minimized. Ludwig and Miller

(2005) propose using cross validation to select bandwidth which minimizes squared prediction errors

but find that the loss function is very “flat” and leads to relatively large bandwidth.

Two different approaches are adopted in empirical studies. One is undersmoothing. In this case,

instead of using the MSE-optimal bandwidth, researchers may want to choose a smaller bandwidth

in order to meet the requirement of h = op(n
−1/5). However, this often leads to a series of ad-hoc

bandwidths without theoretical basis. Another approach is bias correction. In this case, the leading

2Unless otherwise stated, all limits in this chapter are assumed to hold as n→∞.
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bias is consistently estimated in an attempt to remove distortion of the asymptotic approximation.

However, this approach does not perform well because the estimated bias introduces additional

variability. The CCT’s approach is based on bias correction, but redefines the variance component

for normalization so that the additional variability is accounted for.

For any bandwidth h→ 0, the first-order bias of fuzzy RD estimator from local linear regression

is

E(ζ̂(h) | X1, ..., Xn)− ζ = h2(
1

τT
BY (h)− τY

τ2
T

BT (h))(1 + op(1)), (2.4)

with

BZ(h) =
µ

(2)
Z+

2
B+(h)−

µ
(2)
Z−
2

B−(h).

The terms B+(h) and B−(h), explicitly defined in appendix, are observed quantities that depend

on the kernel, bandwidth and running variable. To explicitly calculate the first-order bias, one

needs to estimate τZ , µ
(2)
Z+ and µ

(2)
Z−. Among them τZ is consistently estimated by the local linear

regression with bandwidth h. CCT propose a local second-order regression with a (potentially)

different bandwidth b to estimate the second order derivatives µ
(2)
Z+ and µ

(2)
Z−. This procedure gives

the bias-corrected estimator

ζ̂bc(h, b) = ζ̂(h)−∆(h, b),

with

∆(h, b) = h2(
1

τ̂T (h)
B̂Y (h, b)− τ̂Y (h)

τ̂2
T (h)

B̂T (h, b)),

B̂Z(h, b) =
µ̂

(2)
Z+(b)

2
B+(h)−

µ̂
(2)
Z−(b)

2
B−(h).

Notice that the bias ∆(h, b) is estimated with uncertainty. As a result, the variance of bias-corrected

estimator ζ̂bc(h, b) is different from V (h). CCT propose a new formula for the variance of bias-

corrected estimator and use it for normalization:

ζ̂bc(h, b)− ζ
V bc(h, b)1/2

→d N(0, 1), (2.5)

where V bc(h, b) = V (h) + C(h, b) and C(h, b) captures the adjustment to variance introduced by

the bias-correction term. This distributional approximation is valid even when h = Op(n
−1/5), as
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long as certain conditions on h and b are satisfied. Assumption 2.2 specifies the bandwidth and

kernel conditions assumed by CCT, which I will also use in this chapter.

Assumption 2.2 (Bandwidth and kernel). Let h be the bandwidth used to estimate the local linear

model and let b be the bandwidth used to estimate the second local quadratic model. Then nh→∞,

nb → ∞, and n × min(h, b)5 × max(h, b)2 → 0 as n → ∞. The kernel function K(·) is positive,

bounded, and continuous on the interval [−κ, κ] and zero outside that interval for some κ > 0.

Assumption 2.2 does not require nh1/5 → 0. Instead, it only requires that nh1/5b1/2 → 0 when

h < b or nb1/5h1/2 → 0 when h > b. This assumption also allows for the vast majority kernel

functions commonly used in practice.

To simplify notation, let m = min(h, b) and define the scaled and truncated kernel functions

K+,h(x) = 1
hK(x/h)1{x ≥ 0} K−,h(x) = 1

hK(x/h)1{x < 0}

and

K+,b(x) = 1
bK(x/b)1{x ≥ 0} K−,b(x) = 1

bK(x/b)1{x < 0}.

In the next section, a simple bootstrap procedure is proposed to construct robust confidence

intervals based on the insight provided by CCT’s bias-corrected estimator. This bootstrap proce-

dure is straightforward in the sense that no derivation of analytical formulas for the bias, variance

and covariance terms is required. The bias-corrected estimator and its confidence interval are

numerically different from CCT’s but asymptotically equivalent.

2.3 Bootstrap Algorithm

In this section, two bootstrap algorithms are presented to obtain bias-corrected point estimator

and its confidence intervals in the fuzzy RD designs. Their correctness is justified in two theo-

rems and proved in the appendix. The idea behind both algorithms is to use local second-order

polynomials to approximate the distribution of (Xi, Ti, Yi) around the cutoff. These second order

polynomials, together with the variance structure, have known properties and act as the “true”
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DGP as sample size increases. Assumption 2.2 guarantees that the estimated “true” DGP is close

to the unknown DGP in the sense that distributional approximation derived from the “true” DGP

is asymptotically valid. This can be best illustrated from the special case where h = b, which

translates to nb7 → 0 under Assumption 2.2. By the same argument that h = op(n
−1/5) is required

for valid inference in a RD design estimated by local linear regression, b = op(n
−1/7) is required in

a RD design estimated by local quadratic regression.

The first algorithm consistently estimates the bias term. In particular, after fitting local second-

order regressions of outcome Yi and Ti on running variable Xi at each side of the cutoff, one can

create many datasets through residual bootstrap. Each dataset generates a traditional fuzzy RD

estimate, which are used to calculate the bias. Below is the detailed procedures in Algorithm 2.1.

Algorithm 2.1 (Bias estimation). Assume h and b are bandwidths as defined by Assumption 2.2.

1. Estimate local second order polynomials ĝZ− and ĝZ+ with least squares using K−,b and K+,b

for weights:

ĝZ−(x) = β̂Z−,0 + β̂Z−,1x+ β̂Z−,2x
2, ĝZ+(x) = β̂Z+,0 + β̂Z+,1x+ β̂Z+,2x

2

with

(β̂Z−,0, β̂Z−,1, β̂Z−,2)′ = arg min
β0,β1,β2

n∑
i=1

(Zi − β0 − β1Xi − β2X
2
i )2K−,b(Xi)

(β̂Z+,0, β̂Z+,1, β̂Z+,2)′ = arg min
β0,β1,β2

n∑
i=1

(Zi − β0 − β1Xi − β2X
2
i )2K+,b(Xi).

Let

ĝZ(x) =


ĝZ−(x) if x < 0

ĝZ+(x) otherwise

and calculate the residuals ε̂Zi = Zi − ĝZ(Xi) for all i.

2. Repeat the following steps B1 times to produce the bootstrap estimates η̂∗1(h), . . . , η̂∗B1
(h). For

the kth replication:
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(a) Draw i.i.d. random variables e∗i with mean zero, variance one, and bounded fourth mo-

ments independent of the original data and construct

ε∗Zi = ε̂Zie
∗
i ,

and

Z∗i = ĝZ(Xi) + ε∗Zi

for all i.

(b) Calculate µ̂∗Z+(h) and µ̂∗Z−(h) by estimating the local linear model on the bootstrap data

set using K+,h and K−,h for weights:

µ̂∗Z−(h) = arg min
µ

min
β

n∑
i=1

(Z∗i − µ− βXi)
2K−,h(Xi)

µ̂∗Z+(h) = arg min
µ

min
β

n∑
i=1

(Z∗i − µ− βXi)
2K+,h(Xi).

(c) Save ζ̂∗k(h) =
µ̂∗Y+(h)−µ̂∗Y−(h)

µ̂∗T+(h)−µ̂∗T−(h) .

3. Estimate the bias as

∆∗(h, b) = 1
B1

B1∑
k=1

ζ̂∗k(h)− ĝY+(0)− ĝY−(0)

ĝT+(0)− ĝT−(0)
. (2.6)

Algorithm 2.1 consists of three steps. The first step estimates the bootstrap DGP, which is

captured by second order local polynomials. The second step creates a series of new samples

through wild bootstrap and finds the traditional fuzzy RD estimate for each sample. Notice that

pairs of residuals are multiplied by the same realization of random number e∗ to preserve the

correlation between Yi and Ti.
3 In addition, the fact that T ∗i in bootstrap sample is no longer

binary does not impact the validity of the algorithm because mean function and heteroskedasticity

are preserved. The last step calculates the bias from local linear estimator by definition. Under

Assumption 2.1, 2.2 and assume that B1 is large enough, the procedure described by Algorithm 2.1

3If two independent random variables are used to generate Y ∗i and T ∗i respectively, Y ∗i and T ∗i will also be
independent from each other.
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gives a consistent estimator of the bias component that converges fast enough in probability that

it can be used as a correction, resulting in a bias-corrected estimator that has the same asymptotic

distribution as in (2.5). This conclusion is formally given in Theorem 2.1.

Theorem 2.1. Under Assumptions 2.1 and 2.2,

ζ̂(h)−∆∗(h, b)− ζ
V bc(h, b)1/2

→d N(0, 1), (2.7)

where ∆∗(h, b) is defined by equation (2.6).

Theorem 2.1 enables one to construct valid confidence interval in the form of ζ̂(h)−∆∗(h, b)±

V bc(h, b)1/2. However, the term V bc(h, b) still needs to be calculated. The second algorithm circum-

vents the analytical derivation of V bc(h, b) through an iterated bootstrap. In particular, the first

layer bootstrap is designed to mimic the randomness due to sampling error and the second layer

bootstrap, as described in Algorithm 2.1, is designed to estimate bias due to model misspecification.

The additional variability introduced by the bias correction term will be automatically accounted

for by this iterated bootstrap. The detailed procedure is given in Algorithm 2.2.

Algorithm 2.2 (Distribution). Assume h and b are bandwidths as defined by Assumption 2.2 and

Algorithm 2.1.

1. Estimate ĝZ+ and ĝZ− and generate ĝZ(·) and the residuals ε̂Zi just as in Algorithm 2.1.

2. Repeat the following steps B2 times to produce bootstrap estimates of the bias-corrected esti-

mate. For the kth replication:

(a) Draw i.i.d. random variables e∗i with mean zero, variance one, and bounded fourth mo-

ments independent of the original data and construct

ε∗Zi = ε̂Zie
∗
i ,

and

Z∗i = ĝZ(Xi) + ε∗Zi.

for all i = 1, . . . , n.
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(b) Calculate µ̂∗Z+(h) and µ̂∗Z−(h) by estimating the local linear model on the bootstrap data

set using K+,h and K−,h for weights:

µ̂∗Z−(h) = arg min
µ

min
β

n∑
i=1

(Z∗i − µ− βXi)
2K−,h(Xi),

µ̂∗Z+(h) = arg min
µ

min
β

n∑
i=1

(Z∗i − µ− βXi)
2K+,h(Xi).

(c) Apply Algorithm 2.1 to the bootstrapped data set (X1, T
∗
1 , Y

∗
1 ), . . . , (Xn, T

∗
n , Y

∗
n ) using the

same bandwidths h and b that are used in the rest of this algorithm but reestimating all

of the local polynomials on the bootstrap data. Generate B1 new bootstrap samples and

let ∆∗∗(h, b) represent the bias estimator returned by Algorithm 2.1.

(d) Save the estimator ζ̂∗k(h) =
µ̂∗Y+(h)−µ̂∗Y−(h)

µ̂∗T+(h)−µ̂∗T−(h) , and its bias ∆∗∗k (h, b).

3. Define ζ∗ =
ĝY+(0)−ĝY−(0)
ĝT+(0)−ĝT−(0) and use the empirical CDF of ζ̂∗1 (h)−∆∗∗1 (h, b)− ζ∗, . . . , ζ̂∗B2

(h)−

∆∗∗B2
(h, b)− ζ∗ as the sampling distribution of ζ̂(h)−∆∗(h, b)− ζ.

Algorithm 2.2 also consists of three steps. The first step estimates the bootstrap DGP, which

is captured by second order local polynomials. The second step creates a series of new samples, to

which the Algorithm 2.1 is applied. The last step uses the empirical distribution of bias-corrected

estimator to construct confidence intervals. As before, B2 is assumed large enough so that simula-

tion error can be ignored. The validity of Algorithm 2.2 is established in the following theorem.

Theorem 2.2. Under Assumptions 2.1 and 2.2,

V
∗(ζ̂∗(h)−∆∗∗(h, b))/V bc(h, b)→p 1

and

sup
x

∣∣∣∣∣Pr∗

[
ζ̂∗(h)−∆∗∗(h, b)− ζ∗

V
∗(ζ̂∗(h)−∆∗∗(h, b))1/2

≤ x

]
− Pr

[
ζ̂(h)−∆∗(h, b)− ζ

V bc(h, b)1/2
≤ x

]∣∣∣∣∣→p 0.

Theorem 2.2 enables one to construct confidence intervals in the following form:

(
ζ̂(h)−∆∗(h, b) + ζ∗ − (ζ̂∗(h)−∆∗∗(h, b))1−α/2, ζ̂(h)−∆∗(h, b) + ζ∗ + (ζ̂∗(h)−∆∗∗(h, b))α/2

)
,
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where all the terms with superscript ∗ are defined in Algorithm 2.2. Different from the analytical

one, this confidence interval is not centered at the bias-corrected point estimator. Several remarks

on implementing these algorithms are listed below.

Remark 2.1. The proposed bias correction differs from CCT’s analytical formula in finite sample.

While the analytical bias is obtained by firstly linearizing E
( τ̂Y (h)
τ̂T (h)−

τY
τT

)
and then only evaluating its

first order terms, Algorithm 2.1 directly estimates E
( τ̂∗Y (h)

τ̂∗T (h) −
τ∗Y
τ∗T

)
through bootstrap. Both methods

consistently estimate the bias.

Remark 2.2. When the original treatment is binary, the bootstrap sample will no longer have

binary treatment. Though it creates some difficulty for interpretation, it does not invalidate the

estimation and inference because its conditional expectation and covariance with outcome variable

remain unchanged.

Remark 2.3. The iterated bootstrap is less computationally intensive than it appears to be because

of two reasons. First, the wild bootstrap creates new residuals but leaves the regressors unchanged,

which means the design matrices only need to be computed once even when they are repeatedly used

in fitting local polynomials.4 Second, the number of data points actually used in estimation is a lot

smaller than the full sample.

The bootstrap procedure used in these two algorithms is in line with conventional bootstrap

procedure for IV regression. When generating new samples from an IV model using residual

bootstrap, one usually first estimates both reduced equation and structural equation and then

randomly draws residual pairs from these two equations. Here in the fuzzy RD designs, two reduced

equations are estimated. Instead of randomly drawing residual pairs, wild bootstrap is adopted to

accommodate potential heteroskedasticity.

Both the CCT’s approach and the bootstrap approach presented above are robust to band-

width choice, in the sense that traditional MSE-optimal bandwidth is allowed for valid inference,

4To fit local polynomials is equivalent to estimate weighted least square, i.e., the estimated parameter is
(X′KX)−1X′KY, where X is matrix of regressors and K is weighting matrix determined by kernel function. Both
X and K are not affected by the bootstrap so one just need to compute (X′KX)−1X′K once and then reused it in the
bootstrap calculations. Then each bootstrap replication just requires a single matrix-vector multiplication.
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but they are not robust to weak identification.5 The wild bootstrap requires an initial estimation

of the model, based on which resampling is conducted. Weak instrument makes it difficult to

precisely estimate the model and thus the approximation to the true data generating process is

poor. Alternatives which can improve performance include imposing the null hypothesis or boot-

strapping (asymptotically) pivotal statistics (Davidson and Flachaire, 2008; Cameron et al., 2008).

Statistical inference from the two analytical methods relies on the assumption that the estimate is

asymptotically normal, which is likely to be very skewed when identification is weak.

Evidence of the usefulness of the new procedure proposed above and its relative performance to

the analytical bias correction proposed in CCT are presented in a series of Monte Carlo simulations

in Section 2.4.

2.4 Simulation

The proposed bootstrap algorithms are applied to a variety of data generating processes (DGP).

The baseline DGP is similar to CCT but re-designed to fit the fuzzy RD designs:

Xi ∼ 2× beta(2, 4)− 1

Ti = 1{uti ≤ Φ−1(0.5− c

2
)}1{Xi < 0}+ 1{uti ≤ Φ−1(0.5 +

c

2
)}1{Xi ≥ 0}

Yi = µj(Xi) + Tiζj + uyi,

where uti ∼ N(0, 1) and c = 0.9. The equation for Ti indicates that µT− = 0.5 − c/2 and µT+ =

0.5 + c/2. As a result, the expected treatment conditional on running variable is constant on both

sides but the discontinuity at the cutoff is exactly c. In the equation for Yi, the first part on the

right, µj(Xi) with j = 1, 2, 3, is the conditional expected outcome without treatment, which is

continuous at the cutoff. The second part on the right, Tiζj , captures the additive treatment effect.

In particular, the conditional expected outcome takes the following forms:

5As a measurement of the strength of instrumental variable, the concentration parameter in the setting of fuzzy RD
designs is determined by the effective sample size (nh), density of the running variable at the cutoff (f(0)), variance
of the treatment variable at the cutoff (σ2

T−(0), σ2
T+(0)) and discontinuity in treatment probability (µT+(0)−µT−(0))

(Feir et al., 2016).
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µ1(x) =


1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 if x < 0

0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 otherwise,

µ2(x) =


2.30x+ 3.28x2 + 1.45x3 + 0.23x4 + 0.03x5 if x < 0,

18.49x− 54.81x2 + 74.30x3 − 45.02x4 + 9.83x5 otherwise,

µ3(x) =


1.27x+ 3.59x2 + 14.147x3 + 23.694x4 + 10.995x5 if x < 0

0.84x− 0.30x2 + 2.397x3 − 0.901x4 + 3.56x5 otherwise.

These conditional mean functions are adapted from DGPs for sharp RD designs by preserving

the curvature but removing the discontinuity at the cutoff. The first mean function is designed to

match features of U.S. congressional election data (Lee, 2008; Imbens and Kalyanaraman, 2012).

The second mean function is designed to match the relation between children mortality rate and

county poverty rate from analysis of Head Start data (Ludwig and Miller, 2005). The last mean

function is similar to the first one except for some coefficients. CCT motivates this in an attempt

to generate plausible model with sizable distortion when conventional t-test is performed. The true

treatment effects for these three models are ζ1 = 0.04, ζ2 = −3.45, ζ3 = 0.04.

To accommodate a variety of different error structure in empirical data, the following three

cases are considered.

1. Baseline case. The simplest case where errors are independently and identically distributed: uti

u∗yi

 ∼ N

 0

0

 ,

 1 ρ

ρ 1


 , ρ = 0, uyi = 0.1295u∗yi.

2. Heteroskedasticity. The disturbance term in the outcome equation has a standard error

changing with the running variable, i.e., everything being the same as in the baseline case

except uyi = (0.1295 + 9x2
i )u
∗
yi.

6

6The motivation is to keep the standard error unchanged from the homoskedastic case at the cutoff, so that
estimators from these two cases are more comparable in the sense that they are equivalent in the limit.
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3. Endogeneity. The treatment status is correlated with unobserved characteristics which affect

the outcome. This is modeled by the correlation between uti and uyi, i.e., everything being

the same as in the baseline case except ρ ∈ {−0.9, 0.9}.

In the implementation of Algorithm 2.1 and 2.2, the two-point distribution proposed in Mammen

(1993) is adopted for creating bootstrap samples. This auxiliary distribution is

e∗i =


1+
√

5
2 with probability

√
5−1

2
√

5
,

1−
√

5
2 otherwise,

with zero mean and unit second and third moments. Its property ensures that the skewness of the

bootstrap error terms is the same as the skewness of the residuals, which is a desirable condition

not imposed in Algorithm 2.1 and 2.2.7 In addition, the residuals are transformed before applying

bootstrap because they are on average underestimated by least squares. Specifically, instead of

directly using ε̂Zi, the “HC3” type transformation ε̂Zi/(1 − Hii) is applied, with Hii being the

diagonal element of projection matrix.8 This is based on jackknife covariance estimator and is

shown to outperform the original heteroskedasticity-robust covariance estimator (MacKinnon and

White, 1985). Simulation studies by Davidson and Flachaire (2008) and MacKinnon (2013) also

provide some evidence in favor of “HC3” transformation.

The bootstrap approach uses B1 = 500 replications to compute bias and B2 = 999 replications

to obtain empirical distribution of bias-corrected estimator. Besides the bootstrap approach, two

additional approaches are estimated for comparison: the CCT’s robust estimator and the conven-

tional estimator.9 The two bandwidths for the bootstrap approach and the CCT’s approach are

the same and are obtained by utilizing bandwidth selector from CCT. The bandwidth used in

the conventional approach is chosen by MSE-optimal bandwidth selector proposed by Imbens and

7Some later studies also show good properties of the simpler Rademacher distribution (Flachaire, 2005; Davidson
and Flachaire, 2008).

8Local regressions project K1/2Y onto space of K1/2X, with K being the weighting matrix determined by kernel
function. So the projection matrix will be K1/2X(X′KX)−1X′K1/2.

9All simulations are conducted with R software. Packages rdrobust (V0.94) and RDD (V0.57) are used to estimate
the CCT’s robust estimator and conventional RD estimator respectively. By default, the former one uses the nearest
neighbor variance estimator and the latter one uses “HC1” type heteroskedasticity-robust variance estimator.
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Kalyanaraman (2012).10 These three approaches are applied to a total number of 5000 simulated

samples with a sample size of 1000. Triangular kernel is used throughout all the simulations in this

chapter.11

Simulation results are shown in Table 2.1 and 2.2. For the estimated treatment effect, its bias,

standard error and root of mean squared error are reported in the first three columns. For the

confidence interval, its empirical coverage and average length are reported in the fourth and fifth

columns. The last three columns list the bandwidths used in the two robust methods (hCCT , bCCT )

and the conventional method (hIK). For each sample, the wild bootstrap approach uses the same

bandwidths as the CCT’s robust approach.

Table 2.1 presents these results for data with and without heteroskedasticity. The baseline

case is listed in Panel A. The two robust methods, wild bootstrap and CCT’s approach, generate

point estimates with very similar bias and standard error (identical for DGP 1 and 3 and slightly

different for DGP 2). In contrast, the conventional approach reports 3-5 times larger bias. This is

not surprising since the two robust methods explicitly correct the bias. The conventional method

also fails to deliver a valid interval (coverage rates are 68.1%, 2.6% and 87.2% for the three DGPs

respectively). Improvement is achieved by the robust methods by reducing bias and increasing

interval length. Except for DGP 2, they both generate intervals with empirical coverage close to

the nominal level and the wild bootstrap is lightly better (93.1% VS 91.5% for DGP 1 and 95.3% VS

94.1% for DGP 3). However, for DGP 2, even the robust methods report great size distortion. This

is because DGP 2 has great curvature around the cutoff and makes precise fitting very difficult.12

Still, the two robust methods improve significantly from the conventional method in coverage (from

2.6% to around 87%) at the sacrifice of slightly longer intervals (from 0.186 to around 0.21).

10As is suggested by Imbens and Kalyanaraman (2012), the optimal bandwidth choices in fuzzy RD designs are
often similar to those based on the optimal bandwidth for the numerator only. For simplicity, all bandwidths are
calculated ignoring the fact that the RD design is fuzzy.

11Results with other kernel functions are similar and available in a separate document.
12In particular, the DGP 2 shows great curvature just right to the cutoff. On the right side, its second derivative

at the cutoff is -109.62, so local linear regression is likely to create large bias. Its third derivative at the cutoff is
445.8, so local quadratic regression is likely to create large bias.
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Table 2.1: Empirical coverage and average interval length

DGP Method Bias SD RMSE EC(%) IL hCCT bCCT hIK
Panel A: homoskedastic data

1 Wild bootstrap 0.015 0.054 0.056 93.1 0.197 0.197 0.323

CCT robust 0.015 0.054 0.056 91.5 0.191 0.197 0.323

Conventional 0.042 0.032 0.053 68.1 0.116 0.400

2 Wild bootstrap 0.037 0.058 0.069 86.9 0.210 0.165 0.299

CCT robust 0.039 0.060 0.071 86.6 0.212 0.165 0.299

Conventional 0.215 0.079 0.229 2.6 0.186 0.216

3 Wild bootstrap 0.005 0.053 0.053 95.3 0.205 0.162 0.317

CCT robust 0.005 0.053 0.054 94.1 0.200 0.162 0.317

Conventional -0.025 0.044 0.050 87.3 0.157 0.205

Panel B: heteroskedastic data

1 Wild bootstrap 0.004 0.078 0.079 95.8 0.294 0.110 0.189

CCT robust 0.004 0.071 0.071 94.0 0.268 0.110 0.189

Conventional 0.029 0.048 0.057 90.8 0.185 0.237

2 Wild bootstrap 0.028 0.066 0.072 92.9 0.255 0.149 0.259

CCT robust 0.030 0.067 0.073 91.3 0.251 0.149 0.259

Conventional 0.232 0.109 0.256 5.8 0.213 0.226

3 Wild bootstrap 0.001 0.069 0.069 96.2 0.294 0.110 0.190

CCT robust 0.001 0.069 0.069 94.4 0.267 0.110 0.190

Conventional -0.039 0.061 0.072 83.0 0.187 0.230

Note: EC denotes empirical coverage and IL denote average interval length based on 5000 simu-
lations; nominal coverage probabilities are 95% for each estimator. The columns hCCT and bCCT

list average optimal bandwidths following CCT’s method.The column hIK lists average optimal
bandwidth minimizing MSE.

Panel B in Table 2.1 lists the results when the data is heteroskedastic.13 A significant difference

from the homoskedastic case is the bandwidth choice. For the two robust methods, the bandwidths

are reduced from the homoskedastic case while for the conventional method, this happens only

to DGP 1. The increased noise in the data may reduce the perceived curvature by bandwidth

selector and thus a smaller bandwidth is picked. Smaller bandwidth leads to smaller bias and

larger variance. As a result, intervals in Panel B have higher coverage rate with longer interval

length. The overall pattern in Panel B is similar to Panel A because all the three methods are

robust to heteroskedasticity.

13In Panel A where homoskedastic DGP is used, there still exists heteroskedasticity from the perspective of esti-
mation due to model specification, i.e., to use polynomials with order lower than the true one.
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Table 2.2 presents results when the treatment is endogenous, which is almost always true and

probably the primary reason to choose RD designs as the identification strategy. The case with

positive self-selection is listed in Panel A and negative self-selection in Panel B. Again, the estimate

from conventional method has significantly larger bias than the other two robust methods. As for

interval estimates, the wild bootstrap and the CCT’s approach work reasonably well in all cases

except for DGP 2, where the empirical coverage is around 90% with positive self-selection and 85%

with negative self-selection. The conventional method performs significantly worse, with empirical

coverage rate as low as 1.7% (DGP 2 with negative self-selection). The sign of correlation has

little effect on the bias because the bias is caused by model misspecification rather than imperfect

instrumental variable.

To summarize, the wild bootstrap approach proposed in this chapter performs significantly

better than the conventional method and is at least on par with the CCT’s analytical methods.

This wild bootstrap procedure automatically accommodate various types of covariance structure

and thus is a simple alternative to obtain valid confidence intervals in RD designs.

2.5 Extension: Clustered Data

This section explores the application of the bootstrap procedure to clustered data in RD designs

and provides evidence for its usefulness. Clustered data are very common in empirical studies. Units

within the same cluster are usually dependent and ignoring this dependence is likely to invalidate

statistic inference. There is enormous literature on handling clustered data.14 In short, one can

either explicitly estimate the dependence structure with some additional specifications, such as

random coefficient models, or account for the dependence after estimation, such as using cluster-

robust variance estimator (Liang and Zeger, 1986; Arellano, 1987).

To use cluster-robust variance estimator in statistical inference is very popular partly because

it does not require assumption on the dependence structure and partly because its availability in

almost all statistical software. Its validity is based on asymptotics when the number of clusters

14Specifically, see Wooldridge (2003); Cameron et al. (2012); Cameron and Miller (2015) for an overview on this
topic.
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Table 2.2: Empirical coverage and average interval length (endogenous treatment)

DGP Method Bias SD RMSE EC(%) IL hCCT bCCT hIK
Panel A: ρ = 0.9

1 Wild bootstrap 0.016 0.054 0.056 95.7 0.203 0.197 0.323

CCT robust 0.017 0.055 0.057 93.1 0.196 0.197 0.323

Conventional 0.043 0.033 0.054 70.7 0.121 0.398

2 Wild bootstrap 0.037 0.064 0.074 90.4 0.220 0.168 0.302

CCT robust 0.041 0.067 0.078 89.7 0.233 0.168 0.302

Conventional 0.226 0.092 0.244 3.0 0.207 0.222

3 Wild bootstrap 0.004 0.062 0.062 95.9 0.214 0.161 0.316

CCT robust 0.007 0.055 0.056 94.8 0.202 0.161 0.316

Conventional -0.024 0.043 0.049 86.5 0.156 0.204

Panel B: ρ = −0.9

1 Wild bootstrap 0.015 0.053 0.056 91.3 0.198 0.199 0.324

CCT robust 0.013 0.055 0.056 91.1 0.190 0.199 0.324

Conventional 0.042 0.031 0.052 65.7 0.113 0.402

2 Wild bootstrap 0.037 0.052 0.064 85.5 0.205 0.161 0.296

CCT robust 0.038 0.052 0.064 84.4 0.190 0.161 0.296

Conventional 0.201 0.064 0.211 1.7 0.165 0.208

3 Wild bootstrap 0.005 0.053 0.053 95.6 0.206 0.163 0.317

CCT robust 0.003 0.054 0.054 94.5 0.203 0.163 0.317

Conventional -0.027 0.045 0.052 89.1 0.160 0.207

Note: EC denotes empirical coverage and IL denote average interval length based on 5000 simu-
lations; nominal coverage probabilities are 95% for each estimator. The columns hCCT and bCCT

list average optimal bandwidths following CCT’s method.The column hIK lists average optimal
bandwidth minimizing MSE.

grows to infinity, which is, unfortunately, not trivial to establish in nonparametric models. The

main obstacle is that shrinking tunning variable is likely to destroy the dependence structure. For

local polynomial regressions, Wang (2003) and Chen et al. (2008) point out that the existence of

joint density of running variable and clustering variable ensures that all clusters will eventually

include only a single unit as the bandwidth shrinks to zero. As a result, the clustering structure

disappears. A special case where this does not happen is that clustering occurs at the running

variable level (Chen and Jin, 2005; Bartalotti and Brummet, 2017).15

15For example, in panel data where each individual are observed for multiple times and the running variable is
at individual level, each individual is a cluster and will not vanish with shrinking bandwidth. Lee and Card (2008)
consider another example in RD designs where clustering occurs at the running variable level and cluster-robust
variance estimator is recommended in inference.
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Though there is no asymptotics specifically developed for general RD designs with clustered

data, currently available softwares usually provide options to take this dependence into consid-

eration.16 After all, the estimation of RD designs is no different from linear regression once the

bandwidth is given and conventional cluster-robust variance estimator can be easily applied. Bar-

talotti (2018) adopted a fixed bandwidth framework to study general clustering in RD designs and

proposed higher order correction based on bootstrap.

Bootstrap is also known to be applicable to clustered data. Cameron et al. (2008) provide a

comprehensive survey of bootstrap method and show that proper bootstrap procedures outperform

the conventional cluster-robust variance estimator when the number of clusters is small (five to

thirty).

To check the flexibility and robustness of wild bootstrap procedure proposed in this chapter, I

slightly revise the resampling algorithm to accommodate clustering and test its performance with

pseudo clustered data. Following Brownstone and Valletta (2001) and Cameron et al. (2008), the

wild bootstrap procedure for clustered data is quite straightforward: for units in the same cluster,

their residuals are multiplied by the same random number drawn from the auxiliary distribution.

For example,

Z∗gi = ĝZ(Xgi) + ε̂Zgie
∗
g,

where e∗g, a random number from distribution with zero mean and unit variance, is shared by all

units in the same group. For the purpose of simulation, it is assumed that errors in the outcome

equation is clustered according to a random effect model, in particular,

uygi = u∗yg + u∗yi, u∗yg, u
∗
yi ∼ i.i.d. N(0,

0.1295√
2

),

with g = 1, 2, . . . , G being a group indicator. This design ensures that each individual error has a

standard error of 0.1295, which is the same as the baseline case. However, half of its variability is

contributed by a random effect at the group level.

16For example, both the rdrobust and RDD packages used in this chapter offer the option to specify a clustering
variable.
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Simulation results for G = 5, 10, 25 are reported in Table 2.3.17 Again, two other methods

besides the wild bootstrap method are estimated.18 All the three methods fail to give a good interval

estimate, which are well below the nominal level. This is not surprising because interval estimates

from the two analytical methods (the CCT’s robust approach and the conventional method) are

based on large G asymptotics. The wild bootstrap approach consistently performs better than

the conventional method, but does not improve much from the CCT’s robust approach. The

wild bootstrap procedure proposed in this chapter is similar to the “wild bootstrap-se” method

considered by Cameron et al. (2008). Their simulation results show that “wild bootstrap-se”

method still suffers from size distortion with small number of clusters and is inferior to “wild

bootstrap-t” method. The “wild bootstrap-t” method works well because (1) it imposes the null

hypothesis so that estimation is more precise and (2) it bootstraps asymptotically pivotal t-statistics

and achieves refinement.

This simple experiment shows that the wild bootstrap procedure can not only give valid con-

fidence interval with independent data, it can also be easily applied to clustered data with slight

adjustment to its resampling algorithm and performs at least as good as the analytical robust

method.

2.6 Application

In this section, I apply the bootstrap procedure to the data used in Angrist and Lavy (1999).19

In their paper, the effects of class size on scholastic achievement are estimated using the Maimonides’

rule as instrument.

The rule that maximum class size is 40 has been adopted by Israeli public schools to determine

the division of enrollment cohorts into classes since 1969. Following this rule, when the enrollment

17Since the RD designs is estimated separately on each side, G means the number of clusters on each side. It is
assumed there is no clusters crossing the cutoff.

18For the conventional method, I use the MSE-optimal bandwidth selector ignoring the fact that data is actually
clustered. The conventional method uses cluster-robust variance estimator to construct confidence interval. For the
CCT’s robust approach, I used their companion R package rdrobust, which accommodates clustered data in both
bandwidth selection and interval construction.

19The data is available at http://economics.mit.edu/faculty/angrist/data1/data/anglavy99.
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Table 2.3: Empirical coverage and average interval length (clustered data)

DGP Method Bias SD RMSE EC(%) IL hCCT bCCT hIK
Panel A: G = 5

1 Wild bootstrap 0.018 0.081 0.083 87.0 0.268 0.251 0.318

CCT robust 0.018 0.081 0.083 86.8 0.274 0.251 0.318

Conventional 0.043 0.071 0.083 83.7 0.249 0.392

2 Wild bootstrap 0.037 0.085 0.093 83.4 0.274 0.165 0.297

CCT robust 0.039 0.086 0.094 84.0 0.289 0.165 0.297

Conventional 0.214 0.101 0.237 22.5 0.275 0.216

3 Wild bootstrap 0.007 0.080 0.080 88.6 0.270 0.200 0.312

CCT robust 0.007 0.080 0.081 89.0 0.276 0.200 0.312

Conventional -0.023 0.076 0.080 87.5 0.261 0.202

Panel B: G = 10

1 Wild bootstrap 0.017 0.068 0.070 90.2 0.240 0.230 0.321

CCT robust 0.018 0.068 0.071 88.9 0.236 0.230 0.321

Conventional 0.043 0.055 0.070 83.8 0.200 0.396

2 Wild bootstrap 0.036 0.071 0.079 87.1 0.250 0.166 0.299

CCT robust 0.038 0.071 0.081 86.2 0.253 0.166 0.299

Conventional 0.213 0.089 0.231 12.9 0.239 0.216

3 Wild bootstrap 0.005 0.067 0.067 92.7 0.243 0.186 0.316

CCT robust 0.005 0.068 0.068 91.5 0.240 0.186 0.316

Conventional -0.025 0.062 0.067 88.0 0.220 0.204

Panel C: G = 25

1 Wild bootstrap 0.016 0.061 0.063 91.7 0.216 0.213 0.323

CCT robust 0.016 0.061 0.063 89.6 0.210 0.213 0.323

Conventional 0.043 0.043 0.060 78.7 0.157 0.399

2 Wild bootstrap 0.038 0.065 0.075 86.8 0.228 0.165 0.300

CCT robust 0.040 0.066 0.077 86.6 0.230 0.165 0.300

Conventional 0.214 0.084 0.230 6.4 0.210 0.216

3 Wild bootstrap 0.004 0.060 0.060 94.1 0.221 0.174 0.317

CCT robust 0.004 0.060 0.061 92.6 0.216 0.174 0.317

Conventional -0.025 0.053 0.059 86.6 0.186 0.205

Note: EC denotes empirical coverage and IL denote average interval length based on 5000 simu-
lations; nominal coverage probabilities are 95% for each estimator. The columns hCCT and bCCT

list average optimal bandwidths following CCT’s method.The column hIK lists average optimal
bandwidth minimizing MSE.
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Figure 2.1: Class size, average verbal and math scores

increases and passes multiples of 40, an additional class is required. Since the total enrollment

is roughly evenly divided into all classes, an additional class causes a sudden drop in class size.

Ideally, when the enrollment grows from 40 to 41, class size will drop by half. Because of student

turnover and imperfect enforcement of this rule, the empirical data fit into a fuzzy RD design.

The first discontinuity in class size for the 4th grade is considered. The sample used in this

application includes 1164 classes from schools with enrollments no larger than 80. The outcome

variables are average verbal and math test scores at class level. The discontinuities in class size

and outcomes against enrollment are visualized in Figure 2.1. Each dot in these plots represents

a class and the regression lines are fitted by fourth order polynomials. The shaded areas indicate

confidence interval. The first plot clearly shows the discontinuity in class size. The second plot

suggests a discontinuity in average verbal score, but not as significant as that in class size. The

last plot does not provide much evidence for a discontinuity in average math score.

Similar to the simulations in Section 2.4, three methods are applied to estimate the effect of class

size on average verbal/math scores and results are shown in Table 2.4. The first column lists the

original point estimates from local linear regression, which depends only on the bandwidth choice.

This explains why estimates from wild bootstrap and CCT’s approach are identical and they are

close to the conventional estimate. The second column lists the bias-corrected point estimates based

on bootstrap bias correction and analytical bias correction. They are very close to each other but
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Table 2.4: The effect of class size on average verbal score and average math score.

ATE 95% CI hCCT bCCT hIK
Original Corrected

Panel A: Average verbal score

Wild bootstrap -0.449 -0.575 (-1.100 0.131 ) 12.391 18.278

CCT robust -0.449 -0.575 (-1.111 -0.040) 12.391 18.278

Conventional -0.488 (-1.104 0.129 ) 7.952

Panel B: Average math score

Wild bootstrap -0.185 -0.263 (-0.924 0.466) 11.612 17.683

CCT robust -0.185 -0.272 (-0.884 0.340) 11.612 17.683

Conventional -0.202 (-0.802 0.398) 9.200

differ a lot from the original estimates (the magnitude increases from 0.449 to 0.575 for average

verbal score and 0.185 to 0.263∼0.272 for average math score).

Consistent with what Figure 2.1 shows, only one out of three intervals for the treatment effect on

average verbal score excludes zero and all three intervals for the treatment on average match score

include zero. The interval from wild bootstrap is wider than that from robust analytical approach,

suggesting that it is more conservative, which also can be found from previous simulation studies.

2.7 Conclusion

A new wild bootstrap procedure is proposed to correct bias and construct valid confidence inter-

val in fuzzy RD designs. This new method builds upon the developments and intuition advanced by

CCT but is implemented through a novel iterated bootstrap. In particular, the local second order

models are estimated for generating bootstrap samples. The first layer of bootstrap is performed in

order to obtain the empirical distribution of bias-corrected treatment effect, which is made possible

by utilizing a second layer of bootstrap to estimate the bias from linear models. This new procedure

is proved to be theoretically valid and empirically supported by simulation studies.
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CHAPTER 3. BOUNDING TREATMENT EFFECTS WITH

MISCLASSIFIED DISCRETE DATA

A novel numerical approach is proposed to partially identify treatment effects. Endogenous

treatment and measurement error are very common in survey data and pose threats to reliable

estimation of treatment effects. The new approach considers these two issues simultaneously and

provides bounds for treatment effects. Conceptually, treatment effects and model assumptions

are formulated as linear restrictions on a large set of probability mass. One can then check if

any given treatment effect is consistent with model assumptions and observed data. Compared

with previous methods, the newly proposed numerical approach is general enough to be applied

to various different problems and guarantees sharp bounds. An example is provided to show that

how the distribution of a treatment effect and how the averages of multiple treatment effects can

be partially identified through this approach.

3.1 Introduction

To estimate average treatment effects (ATE) is of great importance to policy makers. Without

the unconfoundedness assumption, economists have invested many efforts in developing econometric

and statistical models to reveal causal effects from observational data (see Imbens and Wooldridge

(2009) for a review of these models). However, the endogenous treatment is not the only obstacle

to causal inference because the data sets used by economists are not error free (see for example

Bound et al. (2001)). While there are a few studies looking into both issues simultaneously (see

for example Kreider et al. (2012)), their methods are usually customized to the specific questions

being answered. This paper introduces a general framework to identify the region of treatment

effects in the presence of both endogenous treatment and measurement error in discrete data.
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This new approach is conceptually straightforward and extremely flexible to accommodate various

assumptions on the selection process and the misclassification process.

This paper adopts and generalizes the approach from Balke and Pearl (1994, 1997) and Lafférs

(2013), who used linear programing to bound average treatment effects when both treatment and

outcome are binary. The basic idea is to find all possible joint distributions of the response function

and observables. Such a joint distribution is constrained in two ways: (1) it should respect the

prior information such at the assumption on selection process and (2) it must be in line with

the distribution of observables. Once a set of feasible joint distributions is identified, we are able

to find a set of feasible treatment effects because the marginal distribution of response function

determines the treatment effect. This approach is generalized in two aspects in this paper. First,

multiple treatments and multiple outcomes are allowed. The analysis of multiple treatments is

an underexplored yet important topic because multiple programs participation is common and the

interaction among multiple programs is usually not well known. Allowing for multiple outcomes

accommodates more data types, e.g., ordered variables, which are widely used in survey designs.

Second, instead of obtaining an interval for the average treatment effect, this paper proposes set

identifying a region of multiple dimensions, thus allowing many interesting questions to be answered.

For example, this region could denote the distribution of the treatment effect, from which one can

infer the quantile treatment effect. This region could also denote average treatment effects of

multiple treatments so that the interaction among programs can be explored.

One critical component which differentiates this paper from previous work by Balke and Pearl

(1994, 1997) and Lafférs (2013) is the consideration of misclassification. While they assume that the

distribution of observables is consistently revealed by the observational data, this paper acknowl-

edges the possibility that the observed distribution systematically differs from the true distribution.

For example, Meyer et al. (2009) found high rates of understatement in the participation of govern-

ment transfer programs in Survey of Income and Program Participation (SIPP), Current Population

Survey (CPS) and Panel Study of Income Dynamics (PSID). Feng (2013) found substantial un-

derreport of unemployment in CPS, based on which the official unemployment rate is calculated.
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Their revised unemployment rate is higher than the official rate by 2.1% on average. This paper

models the misclassification process by firstly allowing any kind of errors and then gradually im-

posing restriction of these errors based on prior information. Essentially any assumptions on the

misclassification process can be easily incorporated into this framework. As a result, there is no

need to develop specific models to deal with different patterns of misclassification.

This paper contributes to the literature of program evaluation by combining two related areas:

partial identification and correction for measurement error. Developed by Manski (1990, 1997,

2003), bounds analysis has gained popularity in program evaluation (see for example Ginther

(2000); Gonzalez (2005); Gerfin and Schellhorn (2006); Gundersen and Kreider (2009); Kreider

and Hill (2009); De Haan (2011); Gundersen et al. (2012); Kreider et al. (2012)). In their work,

analytical bounds for treatment effects are derived following assumptions which are not strong

enough to point identify parameters of interest. However, sharp analytical bounds, i.e., bounds

which exhaust all available information, are not always easy, if not impossible, to derive because

different assumptions interact with each other. For example, Manski and Pepper (2000) pointed

out that it is complex to analyze the bounds of returns to schooling when the assumption of

monotone treatment response (MTS) is maintained and monotone instrumental variables (MIV)

are applied. More over, researchers usually have to derive the analytical bounds case by case for

different combination of assumptions. The difficulty and hassle of deriving analytical bounds can be

circumvented by searching algorithms which numerically minimize objective functions given a series

of carefully tailored constraints. With cheaper computational power and more efficient algorithms,

to perform optimization numerically becomes handy in economic studies (see for example Balke

and Pearl (1997); Manski and Tamer (2002); Honoré and Tamer (2006); Molinari (2008); Ekeland

et al. (2010); Lafférs (2013)).

Following this numerical optimization approach, this paper expands the searching space from the

joint distribution of the response function and observables to an additive misclassification matrix.

As a result, the selection process and misclassification process are considered simultaneously in a

unified framework. The newly introduced additive misclassification approach is closely related to the
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work by Molinari (2008), who developed the direct misclassification approach. The main motivation

to modify Molinari’s (2008) approach is computational tractability. The direct misclassification

approach introduces a set of conditional probabilities to capture the misclassification rates. While

it is easy to formulate optimization problems following this approach, it is not very computationally

friendly. The main reason is that the searching space involves many non-linear constraints and is

non-convex. Molinari (2008) also pointed out that her approach works best if the dimension is

small, e.g., workers union status, employment status, health conditions, and health/functional

status. However, to model the misclassification process at the lowest level, one needs to consider

all combinations of observables, resulting in large dimensions. For example, in the case of binary

outcome, binary treatment and a discrete covariate with a support of 20 values (the case that

Kreider et al. (2012) considered), the dimension goes up to 80.1 The additive misclassification

approach introduced in this paper is an alternative to Molinari’s (2008) approach and greatly

reduces the computation intensity under certain circumstances. It will be shown that under some

widely used assumptions regarding to the misclassification process, e.g., corrupted sampling and

contaminated sampling (Horowitz and Manski, 1995), the optimization problem reduces to a well-

understood linear programing problem.

3.2 The Additive Misclassification Approach

In this section, the additive misclassification approach is introduced and compared with the di-

rect misclassification approach by Molinari (2008). To start with, let W be a random discrete vari-

able of interest, which has support SW = {w1, w2, . . . , wNW } and distribution PW . Since W cannot

be perfectly measured, use W ′ to denote the observed W and P ′W to denote the observed distribu-

tion. Let PW = (PW (w1), PW (w2), . . . , PW (wNW ))T and PW
′

= (P ′W (w1), P ′W (w2), . . . , P ′W (wNW ))T .

Molinari (2008) introduced a direct misclassification approach to infer PW based on P ′W . Her idea is

that PW
′

can be written as a function of PW through a series of linear equations, which is captured

1There are 80 different vectors of the observables (outcome, treatment and covariate). Without any constraints,
measurement error can happen between any two vectors, i.e., 80× 79 = 6320 different types of misclassification. If it
is assumed that covariates are error-free, this number reduces to 4× 3× 20 = 240.
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by a multiplicative misclassification matrix Π:

PW
′

= ΠPW ,

where

Π =



P[W ′ = w1|W = w1] P[W ′ = w1|W = w2] · · · P[W ′ = w1|W = wNW ]

P[W ′ = w2|W = w1] P[W ′ = w2|W = w2] · · · P[W ′ = w2|W = wNW ]

...
...

. . .
...

P[W ′ = wNW |W = w1] P[W ′ = wNW |W = w2] · · · P[W ′ = wNW |W = wNW ]


.

This approach is very convenient, however as will be seen later, it is sometimes not the best way to

model misclassification because of the nonlinearity introduced by the multiplication. The additive

misclassification approach does not use the conditional probability:

E =



0 P[W ′ = w1,W = w2] · · · P[W ′ = w1,W = wNW ]

P[W ′ = w2,W = w1] 0 · · · P[W ′ = w2,W = wNW ]

...
...

. . .
...

P[W ′ = wNW ,W = w1] P[W ′ = wNW ,W = w2] · · · 0


. (3.1)

The additive misclassification matrix E is obtained from the direct misclassification matrix Π by

two steps: firstly multiply the ith column of Π by PW (wi) and secondly replace diagonal elements

by zeros (because diagonal cells represent correct measurement). Let 1NW be a vector of ones, with

NW being the size of set SW , then PW
′

can be expressed by PW and E by the following equation:

PW
′

= PW + E1NW − E
T1NW , (3.2)

where E1NW are false positive probabilities and ET1NW are false negative probabilities.

Let PE = vec(E). The set Hp[PE ] is a collection of all feasible PE , with the superscript p

indicating probabilistic requirement. Formally,

Hp[PE ] = {PE : PE ∈ [0, 1]N
2
W ,PW ∈ [0, 1]NW , (3.3a)

Eii = 0 ∀ i = 1, 2, . . . , NW , (3.3b)

PW − ET1NW � 0, (3.3c)

PW
′

= PW + E1NW − E
T1NW }. (3.3d)
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Condition (3.3a) is the basic requirement because PW and PE are probabilities. Condition (3.3b)

corresponds to the definition of E that all diagonal elements are zero. Condition (3.3c) imposes a

cap in the misclassification probability, i.e., P[W = wi] ≥ P[W ′ 6= wi,W = wi]. Condition (3.3d)

is a reproduce of equation (3.2). The constraint that all probabilities in PW should add up to one

is implied by the last condition and thus ignored.

Proposition 3.1. Hp[PE ] is a compact and convex set.

This conclusion deviates from Proposition 1 by Molinari (2008), who shows that the set of

feasible Π is connected but not convex. This deviation can be explained by the different construction

of misclassification matrices Π and E. While the direct misclassification approach unavoidably

involves nonlinear constraints on Π and PW , the additive misclassification approach only involves

linear constraints on E and PW .

Not only Hp[PE ] is convex, when combined with some widely used assumptions on the misclas-

sification process, the set of PE is still convex. In Example 3.1, it is shown that the geometry of

PE is convex given no prior information on the misclassification. The convexity of PE also holds

under some widely used assumptions such as maximum misclassification rate.

Example 3.1. Suppose W is a binary variable and PW ′(1) = 0.6. The additive misclassification

matrix is fully captured by its off-diagonal elements E2,1 and E1,2. Without any assumption on the

misclassification, the geometry of PE is plotted in Figure 3.2(a). Define misclassification rates:

π = P[W ′ 6= W ], π2,1 = P[W ′ = 1|W = 0], π1,2 = P[W ′ = 0|W = 1].

Figure 3.2(b), 3.2(c) and 3.2(d) present the geometry of PE under different assumptions. In Figure

3.2(b), the overall misclassification rate is capped by 0.2. In Figure 3.2(c), the misclassification

rates for both W = 0 and W = 1 are capped by 0.2. In Figure 3.2(d), the monotonicity in

misclassification rate is imposed. In all cases, the geometry of PE is convex.2

2While the convexity of PE in Figure 3.2(b) and 3.2(c) holds for W with any dimension, the convexity of PE

under the assumption of monotonicity in misclassification rate holds only when W has a dimension of two.
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Figure 3.2: The geometry of PE

By construction of the additive misclassification matrix, PW is a linear transformation of PE . As

a result, any parameter of interest as a function of PW is also a function of PE , i.e., τ = G(PW ) =

G′(PE). The convexity of PE is a very desirable property in making inference on τ because convex

optimization is in general much easier than non-convex optimization. While there are lots of

standard algorithms for efficiently solving convex optimization problems, non-convex optimization

problems are hard (if not impossible) to solve exactly in a reasonable time. As a result, heuristic

algorithms, which does not guarantee desired solutions, are usually used in practice.

3.3 The Treatment Effect with Discrete Data

In this section, the linear programming model for partially identifying treatment effect (Lafférs,

2013) is utilized and seamlessly combined with the newly introduced additive misclassification

approach. The resulted model is capable of taking any prior information on the selection process

and misclassification process.

Given finite sets SY and SZ , let random variable Y ∈ SY denote the outcome and Z ∈ SZ the

treatment. Both outcome and treatment are likely to be measured with error. Let Y ′ denote the

observed outcome and Z ′ the observed treatment, which may be different from their true values.

Define the response function F ∈ SF = {f : Z → Y } and the treatment effect T = F (zj)− F (zi) ∈

ST . The distribution of T is usually of interest. Given any specific response function f , the

treatment effect f(zj)− f(zi) can be calculated. As a result, in order to identify the distribution of
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T , it suffices to identify the distribution of F . Let P with subscript denote distribution, E denote

expectation and P denote probability. Then PT and E[T ] are functions of PF :

PT (t) =
∑
f∈SF

f(zj)−f(zi)=t

PF (f). (3.4)

The distribution of treatment effect is captured by the vector PT = (PT (t1), PT (t2), . . . , PT (tNT ))T ,

with NT being the size of set ST . Equation (3.4) indicates that PT is linear in probability mass

from distribution PF . However, PF is never known because only one point of the response function

is revealed for each unit. The difficulties in identifying treatment effects from observational data

can be illustrated in Figure 3.3.

Population
of interests

PF

PY,Z

PY ′,Z′

Predetermined

Selection process

Misclassification process

Figure 3.3: Identify treatment effects from misclassified data
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The distribution of response function F is predetermined and likely to affect which treatment

to receive. The distribution PY,Z is linked to PF by

PY,Z(y, z) =
∑
f∈SF

PY,Z,F (y, z, f)

=
∑
f∈SF

PF (f)PZ|F (z|f)PY |Z,F (y|z, f)

=
∑
f∈SF

1[f(z) = y]PF (f)PZ|F (z|f) (3.5)

The first equality holds because of the law of total probability. The second equality holds after

repeatedly applying Bayes’s rule and the third equality holds because there is no uncertainty in

outcome once Z and F are given. Equation (3.5) highlights the data generating process of ob-

servables. Notice that PZ|F captures the selection process. Whenever PZ|F 6= PZ , endogeneity

issue arises because the distribution of treatment depends on response function, which captures the

unobserved heterogeneity among different units. For example, one may choose a treatment based

on expected gain.

Proposition 3.2. The expected outcome conditional on treatment E[Y |Z = z] is a weighted average

of Y (z), with the weights being proportional to
PZ|F (z|f)

PZ(z) .

Proposition 3.2 has two implications. First, without the assumption that PZ|F (z|f) = PZ(z),

the conditional expectation E[Y |Z = z] does not equal to the unconditional expectation Y (z). As

a result, one can evaluate treatment effects by taking the difference of conditional means only if the

treatment is random. Second, when the selection process PZ|F (z|f) is known and the conditional

mean E[Y |Z = z] can be interpreted as a weighted average of Y (z). However the difference between

conditional means cannot be interpreted as a weighted treatment effect because the weight
PZ|F (z|f)

PZ(z)

varies with treatment in general.

The misclassification process is modeled by the additive misclassification approach similar to

equations (3.1) and (3.2), except that W is now a random vector W = (Y,Z). Accordingly, w,w′

are specific vectors from SY × SZ .
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To identify the treatment effect, let PFW = vec(MF,W )T and PFWE = [(PFW )T , (PE)T ]T ,

where MF,W is the matrix of all probability mass from distribution PF,W defined below:

MF,W =



PF,W (f1, w1) PF,W (f1, w2) . . . PF,W (f1, wNW )

PF,W (f2, w1) PF,W (f2, w2) . . . PF,W (f2, wNW )

...
...

. . .
...

PF,W (fNF , w1) PF,W (fNF , w2) . . . PF,W (fNF , wNW )


.

The vector PFWE must meet a minimum set of probabilistic requirement in a similar way to

equation (3.3). Formally,

Hp[PFWE ] = {PFWE : PFWE ∈ [0, 1]NW (NW+NF ), (3.6a)

Eii = 0 ∀ i = 1, 2, . . . , NW , (3.6b)

PF,Y,Z(f, y, z) = 0 if f(z) 6= y, (3.6c)

MT
F,W1NF − E

T1NW � 0, (3.6d)

PW
′

= MT
F,W1NF + E1NW − E

T1NW }. (3.6e)

Conditions (3.6a), (3.6b), (3.6d) and (3.6e) are analogous to conditions (3.3a), (3.3b), (3.3c) and

(3.3d) respectively. Condition (3.6c) assigns zero probabilities to some response functions because

they are in conflict with observed treatment and outcome. For example, in the case of binary

treatment and outcome, if response function f1 is defined by f1(0) = 1 and f1(1) = 1, then it is

known for certain that P[F = f1, Y = 0, X = 0] = 0 and P[F = f1, Y = 0, X = 1] = 0. Besides

the minimum probabilistic requirement for PFWE , any prior information can impose restrictions

on the values that PFWE can take. Let H i[PFWE ] denote the set of PFWE which respects prior

information. Then the distribution of treatment effect PT is identified by

H[PT ] = {BPFWE : PFWE ∈ Hp[PFWE ] ∩H i[PFWE ]}, (3.7)

where B is a known NT by NW (NW +NF ) matrix implicitly defined in equation (3.4).
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Proposition 3.3. If H i[PFWE ] is convex, H[PT ] is convex.

Though equation (3.7) provides a straightforward expression of H[PT ], to empirically find

the geometry of H[PT ] is not trivial. Without loss of generality, consider the following form of

Hp[PFWE ] ∩H i[PFWE ]:3

{PFWE ∈ RNW (NW+NF ) : gi(P
FWE) ≥ 0, i = 1, 2, . . . k}.

Without knowing H[PT ] is convex, one generally needs to check every possible vector ζ ∈ RNT to

find the region of H[PT ]. This can be done by solving the following optimization problem:

Q(ζ) = min
PFWE ,{vi}

k∑
i=1

vi

s.t. BPFWE − ζ = 0,

vi ≥ 0 ∀ i = 1, 2, . . . , k,

gi(P
FWE) + vi ≥ 0 ∀ i = 1, 2, . . . , k

When Q(ζ) = 0, i.e., v1, v2, . . . , vk = 0, one can conclude that ζ ∈ H[PT ] because all the k

constraints are satisfied, otherwise ζ /∈ H[PT ]. In the case H i[PFWE ] is convex, which will be

intensively discussed in the following section, the distribution of treatment effect H[PT ] is also

convex by Proposition 3.3. It is not necessary to check every possible vector ζ ∈ RNT . Instead, one

can firstly find the range of the first dimension, secondly find the range of the second dimension

conditional on the first dimension, thirdly find the range of the third dimension conditional on the

first two dimensions and repeat this process until the last dimension.

3.4 Analysis of the Identifying Power of Specific Restrictions

Several specific restrictions are discussed in this section. In line with the previous section, these

restrictions are grouped into three categories: restrictions on the predetermined distribution of

3Constraints with strict inequality are not considered to save the discussion of potential open set. All constraints
in the form of “≥”, “=” and “≤” are formatted as constraints in the form of “≥” for notational simplicity.
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response function PF , restrictions on the selection process PZ|F and restrictions on the misclassi-

fication process E. A numerical example illustrating the identifying power of these restrictions is

provided at the end of this section.

3.4.1 The response function

The distribution of response function PF is predetermined but unobservable. However, among

the NNZ
Y different response functions, some are less credible than others. Manski (1997) discussed

what can be learned from the data without knowledge on treatment selection. His key assumption

is monotone treatment response (MTR), i.e., zi ≥ zj ⇒ f(zi) ≥ f(zj). This assumption is valid

if the treatment is widely accepted to have non-positive or non-negative effect, e.g., the effect of

language skills on wage (Gonzalez, 2005). To impose this assumption is equivalent to assign zero

probabilities to some response functions which violate monotonicity:

PF (f) = 0 if zi ≥ zj ⇒ f(zi) < f(zj). (3.8)

Assumption (3.8) indicates that every individual response function is monotone in treatment, which

may be too strong since no exception is allowed. To weaken MTR at individual level, one can assume

that the monotonicity holds on average, hence MTR on average:

E[F (zi)− F (zj)] ≥ 0 if zi ≥ zj . (3.9)

The assumption of MTR on average does not directly assign any zero probabilities, thus all possible

response functions are allowed. Besides restriction on the average treatment effect, one may also

have some beliefs on the quantile treatment effect, which can be formatted in a similar way. For

example, if zi ≥ zj , at least 100α percent of units benefit from switching from zj to zi:

Qα[F (zi)− F (zj)] ≥ 0 if zi ≥ zj . (3.10)

The assumption of quantile treatment effect may be relevant when a program is made available by

voting, so at least a certain share of units can benefit from participation. Assumptions (3.9) and

(3.10) are not widely used in empirical studies, probably because it is difficult to derive analytical
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solutions. Not surprisingly, if Assumption (3.8) is imposed, then (3.9) holds conditional on any

covariates (see for example Manski and Pepper (2009)).

3.4.2 The selection process

The distribution of treatment conditional on response function captures the treatment selection

process. A rational unit will make a choice which maximizes her utility. Once the outcome and

treatment are observed, this outcome should be the best outcome that she can obtain by choosing

from all available treatments. Manski (1990) studied the identification power of selection for better

outcome. In his settings, there are treatment A and B, when the realized treatment is B, one can

infer that Y (B) ≥ Y (A). Following this idea, the assumption of selection for better outcome can

be generalized to multiple treatments:

PF,Y,Z(f, y, z) = 0 if ∃z̃ ∈ SZ , f(z̃) > y. (3.11)

In other words, the probability that F = f, Y = y, Z = z is zero if there exists another treatment

z̃ 6= z such that f(z̃) > y. Follow the large literature of bounded rationality, it is sometimes

preferred to assume that units are seeking a satisfactory solution rather than the optimal one in

decision making. As a result, a probabilistic version of Assumption (3.11) is proposed below:

∑
y∈SY

PF,Y,Z(f, y, zi) ≥
∑
y∈SY

PF,Y,Z(f, y, zj) if f(zi) > f(zj). (3.12)

Assumption (3.12) is substantially weaker than Assumption (3.11). It states that, conditioning on

response function F = f , units are more likely to select a treatment with better outcome.

3.4.3 The misclassification process

The misclassification process is usually modeled by a series of restrictions on misclassification

rates, i.e., the conditional probability of measurement with error. In the direct misclassification

approach, every off diagonal element in the misclassification matrix Π represents a misclassification

rate. However in the additive misclassification approach, the misclassification rates need to be
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calculated. The overall misclassification rate is

γW = P[W 6= W ′] =

NW∑
i=1

NW∑
j=1

Eij . (3.13)

For any specific value wj ∈ SW , its misclassification rate is

γwj =
P[W = wj ,W

′ 6= wj ]

P[W = wj ]
=

NW∑
i=1

Eij∑
f∈SF

PF,W (f, wj)
. (3.14)

The models of corrupted sampling and contaminated sampling (Horowitz and Manski, 1995) can

be easily implemented by utilizing equations (3.13) and (3.14). For example, to model corrupted

sampling, one can impose γW ≤ ε, where ε is the cap of misclassification rate obtained from other

sources. To model contaminated sampling, one can impose γwj ≤ ε ∀ j = 1, 2, . . . , NW . Both

equation (3.13) and (3.14) focus on the misclassification of vector W = (Y,X). In practice, it is

more likely to have prior information on the misclassification rates for variables separately, but not

jointly. It turns out the misclassification rates for a single variable overall and for any of its specific

values can be obtained in a similar way. Take the treatment Z as an example, the misclassification

rate of Z is

γZ = P[Z 6= Z ′] =
∑

(i,j)∈S

Eij , (3.15)

with S = {(i, j) ∈ {1, 2, . . . , NW }2 : zi 6= zj}.

For any specific value zj ∈ SZ , its misclassification rate is

γzj =
P[Z = zj , Z

′ 6= zj ]

P[Z = zj ]
=

∑
(a,b)∈S

Eab∑
f∈SF

∑
y∈SY

PF,Y,Z(f, y, zj)
, (3.16)

with S = {(a, b) ∈ {1, 2, . . . , NW }2 : za 6= zj , zb = zj}.

Equations (3.15) and (3.16) allow flexible and customized assumptions on the misclassification at

variable level. In the application to program evaluation, it is usually the case that some variables

are more prone to misclassification (such as treatment status), while some other covariates are
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relatively credible (such as age). In this case, researchers may want to impose the assumption

that misclassification rates of all variables except for treatment status are zero. More over, one

can go further than equation (3.16) by restricting the probability of a specific error. For example,

P[Z ′ = 1, Z = 0] = 0 indicates that if a unit is not treated (Z = 0), she will not report being treated

(Z ′ = 1). In other words, the probability of false positive is ruled out and only false negative is

allowed. This is consistent with the fact that socially undesirable behavior is usually underreported

(Meyer et al., 2009).

3.4.4 Discussion

While the distribution of treatment effect H[PT ] is identified given any prior information cap-

tured by H[PFWE ], the difficulty of empirically finding the geometry of PT depends on how

H i[PFWE ] is constructed. It is straightforward to verify that Assumptions (3.8) - (3.12) imposes

linear restrictions on the vector PFWE . The models of corrupted sampling and contaminated sam-

pling utilizing equations (3.13) - (3.16) also impose linear restrictions on the vector PFWE . Since

linear optimization is a special case of mathematical optimization and runs in polynomial time, it

is easy to find the geometry of PT even when the number of dimensions is large.

However, the optimization becomes substantially harder if some assumptions introduce non-

linear constraints and lead to a non-convex set H i[PFWE ]. For example, this can happen when the

assumption is formatted as comparison between two ratios, where both numerator and denominator

involve vector PFWE . The assumption of monotonicity in correct reporting (see case (d) in Example

3.1) falls into this category. Another possibility is the application of mean independent or monotone

instrumental variables when the instrumental variables are also misclassified. In both cases, the

non-linearity arises because conditional probabilities are compared directly. If one is willing to

assume that the variables being conditioned are error free, then the denominators in those ratios

do not involve vector PFWE and the constraints become linear in vector PFWE .
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3.4.5 A numerical example

In this subsection, the identifying power of various assumptions on PF , PZ|F and the misclassi-

fication matrix E are examined. Consider SY = {0, 1}, SZ = {0, 1, 2} and PY ′,Z′(y, z) = 1/6. The

treatment effect of Z = 1 is T1 = Y (1)−Y (0) and the treatment effect of Z = 2 is T2 = Y (2)−Y (0).

Suppose one is interested in

• the distribution of T1,

• the joint feasible set of E[T1] and E[T2].

Following (3.7), all possible distributions for T1 constitute the following set:

H[PT1 ] = {(PT1(−1), PT1(0), PT1(1))T : PT1(i) =
∑
f∈SF

f(1)−f(0)=i

PF (f), i = −1, 0, 1,

PY ′,Z′(y, z) = 1/6 ∀y = 0, 1, z = 0, 1, 2,

PFWE ∈ Hp[PFWE ] ∩H i[PFWE ]},

where the first condition defines the probabilities of each possible treatment effect (in this example,

the treatment effect can only be -1, 0 or 1) and the second and the third conditions makes sure

that PFWE is consistent with all prior information.

Analogous to PT1 , let PATE = (E[T1],E[T2])T be a vector of two different average treatment

effects. It is trivial to verify that PATE = B′PFWE , with B′ being a 2×NW (NW + NF ) matrix.

So equation (3.7) and Proposition 3.2 also apply to PATE . All possible vectors of PATE constitute

the following set:

H[PATE ] = {(E[T1],E[T2])T : E[Tj ] =
∑

i∈{−1,0,1}

i
∑
f∈SF

f(j)−f(0)=i

PF (f), j = 1, 2,

PY ′,Z′(y, z) = 1/6 ∀y = 0, 1, z = 0, 1, 2,

PFWE ∈ Hp[PFWE ] ∩H i[PFWE ]}.

A large number of different H i[PFWE ] are considered. Each H i[PFWE ] is obtained by specify-

ing the assumption on the distribution of response function PF , the selection process PZ|F and the
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misclassification process E. For PF , three assumptions are considered: non-negative median treat-

ment effect, MTR on averate and MTR at individual level.4 See equations (3.8) - (3.10) for details.

For PZ|F , two assumptions are considered: select for better outcome probabilistically and select for

better outcome deterministically. See equations (3.11) - (3.12) for details. For E, three assumptions

are considered: corrupted sampling, contaminated sampling and asymmetric misclassification. See

equations (3.13) - (3.16) for details. When the misclassification is asymmetric, positive errors are

not allowed for Z and negative errors are not allowed for Y .

Figure 3.4 - 3.5 show the identified regions of PTE1 and PATE under various assumptions on

PF and PZ|F . For all plots in these two figures, the corrupted sampling model is maintained. The

header row specifies the assumption on PZ|F , which gets stronger from the left to the right. The

header column specifies the assumption on PF . The largest identified region is observed in the top-

left corner (no assumption on PF and PZ|F ) and the smallest identified region is observed in the

bottom-right corner (MTR at individual level and selection for better outcome deterministically).

The effects of different assumptions are not always trivial, but some are very straightforward.

For example, when MTR on average is imposed, we will have PT1(1) ≥ PT1(−1) and PT1(1) +

PT1(0) + PT1(−1) = 1. Equivalently, 2PT1(1) + PT1(0) ≥ 1, which explains the third row of Figure

3.4. If MTR at the individual level is imposed, then PT1(−1) is forced to zero and we will have

PT1(1) + PT1(0) = 1, which explains the fourth row of Figure 3.4.

Figure 3.6 - 3.7 show the identified regions of PTE1 and PATE under various assumptions on

the misclassification process. For all plots in these two figures, the assumptions of MTR on average

and selection for better outcome probabilistically are maintained. The header row specifies which

variable is subject to misclassification and the header column specifies the type of misclassification.

In both Figure 3.6 and 3.7, the red areas are the same in all eight plots because they are the

identified regions without measurement error and, as a result, are not affected by the assumptions

on the patterns of measurement error.

4The following definition of percentile is adopted: Qα(X) = inf{t : FX(t) ≥ α}.
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3.5 Conclusion

Endogeneity and measurement error are almost unavoidable in survey data and pose threats

to reliable estimation of treatment effects. In this chapter, a unifying framework is proposed to

address these two problems simultaneously. This new framework is based on a novel additive mis-

classification matrix such that many widely adopted assumptions on the patterns of measurement

error can be easily formulated as linear constraints. As a result, the bounds on treatment effects

can be obtained by solving linear programing problems, whose solutions have been well studied

and algorithms have been widely available. Compared with conventional analytical approach, the

newly proposed numerical approach is general enough to be applied to various different problems

and guarantees sharp bounds.
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Figure 3.4: The geometry of PTE1 under different assumptions on PF and PZ|F

Note: The header row specifies the assumptions on PZ|F and the header column specifies

the assumptions on PF . Each cell is a plot of the geometry of PTE1 under a combination of
assumptions on PZ|F and PF . The X-axis denotes the probability of zero treatment effect.
The Y-axis denotes the probability of unit treatment effect. In each plot, multiple identified
regions under the corrupted sampling model are presented, with different colors denoting the
maximum misclassification rates: 0% in red, 10% in orange, 20% in yellow and 30% in green.
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Figure 3.5: The geometry of PATE under different assumptions on PF and PZ|F

Note: The header row specifies the assumptions on PZ|F and the header column specifies

the assumptions on PF . Each cell is a plot of the geometry of PATE under a combination
of assumptions on PZ|F and PF . The X-axis denotes the average treatment effect of the
first treatment. The Y-axis denotes the average treatment effect of the second treatment.
In each plot, multiple identified regions under the corrupted sampling model are presented,
with different colors denoting the maximum misclassification rates: 0% in red, 10% in orange,
20% in yellow and 30% in green.
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Figure 3.6: The geometry of PTE1 under different assumptions on E

Note: The header row specifies which variable is subject to misclassification and the header
column specifies the type of misclassification. Each cell is a plot of the geometry of PTE1

based on the assumptions of MTR on average and select for better outcome probabilistically.
The X-axis denotes the probability of zero treatment effect. The Y-axis denotes the prob-
ability of unit treatment effect. Since a complete ordering does not exist for W = (Y,Z),
the left bottom is left blank. In each plot, multiple identified regions are presented, with
different colors denoting the maximum misclassification rates: 0% in red, 10% in orange,
20% in yellow and 30% in green.
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Figure 3.7: The geometry of PATE under different assumptions on E

Note: The header row specifies which variable is subject to misclassification and the header
column specifies the type of misclassification. Each cell is a plot of the geometry of PATE

based on the assumptions of MTR on average and select for better outcome probabilistically.
The X-axis denotes the average treatment effect of the first treatment. The Y-axis denotes
the average treatment effect of the second treatment. Since a complete ordering does not
exist for W = (Y,Z), the left bottom is left blank. In each plot, multiple identified regions
are presented, with different colors denoting the maximum misclassification rates: 0% in red,
10% in orange, 20% in yellow and 30% in green.
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APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 1

A.1 Additional simulation results

Table A.1: Percent Rejected under H0 : τ = 1 at Nominal Level of 10%

ρ tj tk ARj ARk AR LM CLR

Panel A: Υj = Υk = 1

0.0 0.4 0.8 10.8 10.1 10.6 10.5 10.4

-0.9 21.4 18.8 10.2 10.2 10.3 10.0 10.1

0.9 19.1 20.0 10.1 9.3 10.0 10.5 7.4

Panel B: Υj = Υk = 10

0.0 4.6 4.8 9.8 9.6 10.1 9.8 10.0

-0.9 11.5 11.3 10.1 10.8 9.9 10.4 10.8

0.9 10.5 10.4 9.5 9.8 9.4 9.8 10.4

Panel C: Υj = Υk = 100

0.0 9.0 9.3 9.6 9.7 9.4 10.2 10.5

-0.9 8.3 9.8 10.2 10.4 10.0 10.1 10.2

0.9 10.2 10.1 11.2 10.5 11.2 10.1 10.1
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Table A.2: Percent Rejected at Nominal Level of 5% with N = 500

Method M1 M2 M3 M1 M2 M3

Bias correction No No No Yes Yes Yes

Test Panel A: µY1 and µT1

AR 9.5 9.6 16.9 7.8 7.5 10.4

LM 9.8 10.0 12.4 7.8 7.2 8.6

CLR 9.6 9.8 13.9 7.8 7.2 9.4

Panel B: µY2 and µT1

AR 16.1 11.9 14.1 14.6 11.1 11.8

LM 15.4 12.2 12.2 14.7 10.6 10.9

CLR 14.3 12.8 11.7 14.1 10.8 10.4

Panel C: µY1 and µT2

AR 9.6 9.8 17.0 7.8 7.8 10.0

LM 10.1 10.0 12.6 8.0 7.7 8.7

CLR 9.6 10.3 13.5 7.6 7.6 9.2

Panel D: µY2 and µT2

AR 15.8 12.2 14.5 14.5 11.3 12.2

LM 15.4 12.2 12.5 14.7 10.2 11.3

CLR 14.3 12.3 11.8 14.1 10.4 11.0
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Table A.3: Percent Rejected at Nominal Level of 5% with N = 10000

Method M1 M2 M3 M1 M2 M3

Bias correction No No No Yes Yes Yes

Test Panel A: µY1 and µT1

AR 22.4 48.8 13.2 9.1 20.2 7.0

LM 22.8 51.6 11.8 11.1 22.9 6.9

CLR 22.9 52.3 12.0 11.5 23.2 7.0

Panel B: µY2 and µT1

AR 5.8 7.1 6.5 5.5 5.4 4.8

LM 5.2 7.2 6.6 5.2 5.1 5.6

CLR 5.4 6.7 6.8 5.2 5.3 6.0

Panel C: µY1 and µT2

AR 22.1 50.5 13.4 8.9 20.6 6.8

LM 22.9 51.7 11.9 11.1 23.8 6.4

CLR 23.0 52.4 12.1 11.4 24.0 6.9

Panel D: µY2 and µT2

AR 5.4 6.6 7.0 5.5 5.4 5.1

LM 5.2 6.8 6.8 5.0 5.0 5.8

CLR 5.2 6.8 6.7 5.3 5.2 6.1
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Figure A.2: Power of Bias-corrected Tests at Nominal Level of 5% with N = 500
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Figure A.4: Power of Bias-corrected Tests at Nominal Level of 5% with N = 10000
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A.2 Proofs

A.2.1 Proof of Lemma 1.1

The distribution of Wn is Wn ∼ N(µ,Ωn) with

µ = (τΠ, τΠ′ + τ ′Π,Π,Π′).

Given a single observation of Wn, w, and a known variance Ωn, w is a sufficient statistic for θ

because the factorization theorem naturally holds for

f(w|θ) = (2π)−1/2|Ω|−1/2 exp

(
−1

2
(w − µ)Ω−1(w − µ)′

)
.

Note that Wn is a function of Sn and Tn

W T
n = [STn : T Tn ][B0(BT

0 ΩnB0)−
1
2 : Ω−1

n A0(AT0 Ω−1
n A0)−

1
2 ]−1,

hence Sn and Tn are sufficient statistics for θ, and part (a) of this lemma holds.

To prove part (b), firstly note that Sn and Tn are jointly normal. Their mean and variance are

E(Sn) = (BT
0 ΩnB0)−

1
2 (B0 −B +B)T E(Wn) = (BT

0 ΩnB0)−
1
2 (B0 −B)Tµ,

V(Sn) = (BT
0 ΩnB0)−

1
2BT

0 V(W T
n )B0(BT

0 ΩnB0)−
1
2 = I2,

E(Tn) = (AT0 Ω−1
n A0)−

1
2AT0 Ω−1

n E(Wn) = (AT0 Ω−1
n A0)−

1
2AT0 Ω−1

n µ,

V(Tn) = (AT0 Ω−1
n A0)−

1
2AT0 Ω−1

n V(W T
n )Ω−1

n A0(AT0 Ω−1
n A0)−

1
2 = I2.

In addition, the covariance between Sn and Tn is

Cov(Sn, Tn) = Cov
(
(BT

0 ΩnB0)−
1
2BT

0 Wn, (A
T
0 Ω−1

n A0)−
1
2AT0 Ω−1

n Wn

)
= (BT

0 ΩnB0)−
1
2BT

0 V(Wn)Ω−1
n A0(AT0 Ω−1

n A0)−
1
2

= (BT
0 ΩnB0)−

1
2BT

0 A0(AT0 Ω−1
n A0)−

1
2

= 0,

where the last equality holds because B0 and A0 are designed to be orthogonal. As a result, Sn

and Tn are independent.
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A.2.2 Proof of Theorem 1.1

Firstly notice that since Ŵn is asymptotically normal, Ŝn and T̂n are asymptotically joint normal

as they are linear transformations of Ŵn. We show that Ŝn →d Sn, T̂n →d Tn, and Ŝn and T̂n are

asymptotically uncorrelated.

Ŝn = BT
0 Ω̂nB0)−

1
2BT

0 Ŵn

= (BT
0 Ω̂nB0)−

1
2BT

0 (Ŵn − µ) + (BT
0 Ω̂nB0)−

1
2BT

0 µ

= (BT
0 Ω̂nB0)−

1
2BT

0 (Ŵn − µ) + (BT
0 Ω̂nB0)−

1
2 (B0 −B)Tµ.

By Cramer-Wold Device, we have (BT
0 Ω̂nB0)−

1
2BT

0 (Ŵn − µ)→d N(0, I2); by Slutsky Theorem, we

have (BT
0 Ω̂nB0)−

1
2 (B0 −B)Tµ→p (BT

0 ΩnB0)−
1
2 (B0 −B)Tµ. Hence Ŝn →d Sn. Analogously,

T̂n = (AT0 Ω̂−1
n A0)−

1
2AT0 Ω̂−1

n Ŵn

= (AT0 Ω̂−1
n A0)−

1
2AT0 Ω̂−1

n (Ŵn − µ) + (AT0 Ω̂−1
n A0)−

1
2AT0 Ω̂−1

n µ,

where its first part converge in distribution to standard normal and the second part converge in

probability to the mean of Tn. As a result, T̂n →d Tn. Finally,

Cov(Ŝn, T̂n) = Cov
(
(BT

0 Ω̂nB0)−
1
2BT

0 Ŵn, (A
T
0 Ω̂−1

n A0)−
1
2AT0 Ω̂−1

n Ŵn

)
= (BT

0 Ω̂nB0)−
1
2BT

0 V(Ŵn)Ω̂−1
n A0(AT0 Ω̂−1

n A0)−
1
2

→p 0

because Ω̂n →p V(Ŵn) and BT
0 A0 = 0. Part (a) of Theorem 1.1 holds.

The statistic φ(·, ·, ·, τ0, τ
′
0) is, by definition, a continuous function. The critical value function

cφ(·, ·, τ0, τ
′
0, α) is also a continuous function because the conditional distribution of Sn given Tn is

absolutely continuous with a density that is smooth function of Tn. Hence part (b) of this theorem

holds by continuous mapping theorem.

Part (c) follows immediately from part (b) because under the null,

Pr
(
ψ(Ŝn, T̂n, Ω̂n, τ0, τ

′
0) > cψ(T̂n, Ω̂n, τ0, τ

′
0, α)

)
→p Pr

(
ψ(Sn, Tn,Ωn, τ0, τ

′
0) > cψ(Tn,Ωn, τ0, τ

′
0, α)

)
= α,

where the equality holds by definition of the critical value function.
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A.2.3 Proof of Lemma 1.4

Assumption 1.1 ensures that fY (0)|X(y|x) =
∫
Y (1)

∫
T (1)

∫
T (0) fS|X(s|x)ds is continuous at the

threshold, implying the continuity of y(0, x, p) because

y(0, x, p) = min
a

∫ a

−∞
fY0|X(u|x)du = q.

Again, Assumption 1.1 ensures that
∂fY (0)|X(y|x)

∂x =
∫
Y (1)

∫
T (1)

∫
T (0)

∂fS|X(s|x)

∂x ds is continuous at the

threshold. Note that

∂y(0, x, p)

∂x
= −

∂FY (0)|X(y|x)

∂x

fY (0)|X(y|x)

∣∣∣∣∣
y=y(0,x,p)

= −
∫ y
−∞

∂fY (0)|X(u|x)

∂x du

fY (0)|X(y|x)

∣∣∣∣∣∣
y=y(0,x,p)

,

so y(0, x, p) has continuous first order derivative with respect to the running variable at the thresh-

old. Similar argument can be made to y(1, x, p). Hence part (a) of this lemma holds.

Let τ(x, p) = y(1, x, p)− y(0, x, p) be the quantile treatment effect and τ ′(x, p) be its first order

derivative with respect to the running variable. Theorem 1 from Chernozhukov and Hansen (2005)

ensures that1

Pr[Yi ≤ y(Ti, Xi, p)|Xi] = p ∀p ∈ (0, 1).

Notice that y(Ti, Xi, p) = y(0, Xi, p) + Ti
(
y(1, Xi, p) − y(0, Xi, q)

)
= y(0, Xi, p) + Tiτ(Xi, p). As a

result, Pr[Yi−Tiτ(Xi, p) ≤ y(0, Xi, p)|Xi] = p, or equivalently, qp
(
Yi−Tiτ(Xi, p)|Xi

)
= y(0, Xi, p).

Since qp
(
Yi − Tiτ(Xi, p)|Xi

)
has the same smoothness properties as y(0, Xi, p), it suffices to

show that

lim
x→0

qp(Y
∗
i |Xi = x) = qp

(
Yi − Tiτ(Xi, p)|Xi = 0

)
(A.1)

and

lim
x→0

∂qp(Y
∗
i |Xi = x)

∂x
=
∂qp
(
Yi − Tiτ(Xi, p)|Xi = x

)
∂x

∣∣∣∣∣
x=0

. (A.2)

Equality (A.1) is trivial by the definition of Y ∗i . Equality (A.2) holds following the proof below.

1They result is conditioning on instrumental variable Z, which is a fully determined by X and is thus dropped.
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∂qp
(
Yi − Tiτ(Xi, p)|Xi = x

)
∂x

=−
∂FY−Tτ(X,p)|X(y|x)

∂x

fY−Tτ(X,p)|X(y|x)

∣∣∣∣∣
y=y(0,x,p)

=−
∂
∫ y
−∞ fY−Tτ(X,p)|X(u|x)du

∂x

fY−Tτ(X,p)|X(y|x)

∣∣∣∣∣∣
y=y(0,x,p)

=−
∂
∫ y
−∞ Pr[T=0|x]fy(0,X,ε0)|(X,T=0)(u|x)+Pr[T=1|x]fy(1,X,ε1)−τ(X,p)|(X,T=1)(u|x)du

∂x

fY−Tτ(X,p)|X(y|x)

∣∣∣∣∣∣
y=y(0,x,p)

.

Analogously,

∂qp(Y
∗
i |Xi = x)

∂x
= −

∂
∫ y
−∞ Pr[T=0|x]fy(0,X,ε0)|(X,T=0)(u|x)+Pr[T=1|x]fy(1,X,ε1)−(τ(p)+Xτ ′(p))|(X,T=1)(u|x)du

∂x

fY−T (τ(p)+Xτ ′(p))|X(y|x)

∣∣∣∣∣∣
y=y(0,x,p)

After comparing the difference between
∂qp(Y ∗i |Xi=x)

∂x and
∂qp
(
Yi−Tiτ(Xi,p)|Xi=x

)
∂x , it can be shown

that

lim
x→0

fY−T (τ(p)+Xτ ′(p))|X(y|x) = fY−Tτ(X,p)|X(y|x)
∣∣
x=0

,

and

lim
x→0

∂fy(1,X,ε)−(τ(p)+Xτ ′(p))|(X,T=1)(u|x)

∂x

= lim
x→0

∂fy(1,X,ε1)|(X,T=1)(u+ (τ(p) + xτ ′(p))|x)

∂x
τ ′(p)

=
∂fy(1,X,ε1)|(X=x,T=1)(u+ τ(0, p))

∂x
τ ′(0, p)

=
∂fy(1,X,ε)|(X,T=1)(u+ τ(x, p)|x)

∂x
τ ′(x, p)

∣∣∣∣
x=0

=
∂fy(1,X,ε)−τ(X,p)|(X,T=1)(u|x)

∂x

∣∣∣∣
x=0

.

As a result, equation (A.2) holds.
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A.3 Additional mathematic notes

A.3.1 The statistic for likelihood ratio test

Given Ωn, the log likelihood function of observing Wn is

lnL(Wn|τ, τ ′,Π,Π′) = − ln(2π)− 1

2
ln(|Ωn|)−

1

2
(Wn − µ)TΩ−1

n (Wn − µ),

with µ = (τΠ, τ ′Π + τΠ′,Π,Π′)T . To remove nuisance parameter (Π,Π′), let µ̃ = A(Π,Π′)T and

assume (τ, τ ′) is fixed. Then to maximize lnL(Wn|τ, τ ′, π, π′) is equivalent to the following restricted

optimization problem:

max
µ̃

lnL(Wn|µ̃) = −ln(2π)− 1

2
ln(|Ωn|)−

1

2
(Wn − µ̃)TΩ−1

n (Wn − µ̃)

s.t. BT µ̃ = 0.

With Lagrange multiplier method, one can obtain µ̃∗ =
(
I4−ΩnB(BTΩnB)−1BT

)
Wn. As a result,

the concentrated log likelihood function is

lnL(Wn|τ, τ ′) = − ln(2π)− 1

2
ln(|Ωn|)−

1

2
W T
n B(BTΩnB)−1BTWn.

Hence the likelihood ratio statistic is

LR0 = W T
n B0(BT

0 ΩnB0)−1BT
0 Wn − min

(τ,τ ′)
W T
n B(BTΩnB)−1BTWn.

A.3.2 The statistic for Lagrange multiplier test

The first order derivative of log likelihood with respect to parameters (τ, τ ′)T is

∂ lnL(Wn|τ, τ ′,Π,Π′)
∂(τ, τ ′)T

= (Wn − µ)TΩ−1
n



Π 0

Π′ Π

0 0

0 0


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Note that when evaluated at (τ0, τ
′
0, Π̂, Π̂

′), the mean is µ̃∗ =
(
I4−ΩnB0(BT

0 ΩnB0)−1BT
0

)
Wn, hence

∂ lnL(Wn|τ, τ ′,Π,Π′)
∂(τ, τ ′)T

∣∣∣∣
τ0,τ ′0,Π̂,Π̂

′
=
(
Wn −

(
I4 − ΩnB0(BT

0 ΩnB0)−1BT
0

)
Wn

)T
Ω−1
n



Π̂ 0

Π̂′ Π̂

0 0

0 0



= W T
n B0(BT

0 ΩnB0)−1BT
0



Π̂ 0

Π̂′ Π̂

0 0

0 0


= W T

n B0(BT
0 ΩnB0)−1Π̂

= STn (BT
0 ΩnB0)−

1
2 Π̂.

So the statistic for Lagrange multiplier test is

LM0 = STn (BT
0 ΩnB0)−

1
2 Π̂
(
Π̂
T

(BT
0 ΩnB0)−1Π̂

)−1
Π̂
T

(BT
0 ΩnB0)−

1
2Sn,

which can be further simplified to STn Sn given that Π̂ is non-singular.

The maximum likelihood estimators for nuisance parameters are obtained by solving the fol-

lowing first order condition:

∂ lnL(Wn|τ0, τ
′
0,Π,Π

′)

∂(Π,Π′)T
= (Wn − µ)TΩ−1

n A0

=

Wn −A0

 Π

Π′



T

Ω−1
n A0

= 0.

The solution is (Π̂, Π̂′)T = T Tn (AT0 Ω−1
n A0)−

1
2 and is independent with Sn. As a result, LM0 follows

chi-squared distribution with two degrees of freedom under the null hypothesis.
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A.3.3 The estimation of Ω̂n

By definition, Ω̂n is the variance estimator for Ŵn. Since Ŵn is the difference between estimators

from two sides, which are independent, we have

Ω̂n = V[Ŵn] = V[Ŵ+
n ] +V[Ŵ−n ].

The same steps can be applied to the calculation of both V[Ŵ+
n ] and V[Ŵ−n ]. The following

discussion focuses on V[Ŵ+
n ] only. Ŵ+

n is a vector of bias-corrected intercepts and slopes, i.e.,

Ŵ+
n =



µ̂Y+(hY,0)−B+,0µ̂
(2)
Y+

(hY,2)h2
Y,0

µ̂
(1)
Y+

(hY,1)−B+,1µ̂
(2)
Y+

(hY,2)hY,1

µ̂T+(hT,0)−B+,0µ̂
(2)
T+

(hT,2)h2
T,0

µ̂
(1)
T+

(hT,1)−B+,1µ̂
(2)
T+

(hT,2)hT,1


.

CCT’s Lemma SA4 provides formula for the diagonal elements ofV[Ŵ+
n ]. For off-diagonal elements,

one can make use of the covariance terms provided by CCT’s Theorem A2.
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APPENDIX B. ADDITIONAL MATERIAL FOR CHAPTER 2

This appendix adopts CCT’s notation where possible and utilizes some conclusions from that

paper. Let ep be the selection vector with 1 in element p + 1 and 0 everywhere else and assume,

with some abuse of notation, that the dimension of ep adapts to make matrix and vector operations

conformable. Much of the theory in this appendix applies to both sides of the cutoff symmetrically,

so I use “•” as a placeholder for either + or − in equations. Further let rp(x) = (1, x, . . . , xp)′,

1+(x) = 1{x ≥ 0}, 1−(x) = 1{x < 0}, m = min(h, b) and ν ≤ p < q. Define the following terms

related to local polynomial regression:

Γ•,p(h) = 1
n

n∑
i=1

rp(Xi/h)rp(Xi/h)′K•,h(Xi)

Γ•,q(b) = 1
n

n∑
i=1

rq(Xi/b)rq(Xi/b)
′K•,b(Xi)

B•,ν,p,q(h) = ν!e′ν
(
Γ•,p(h)

)−1 1
n

n∑
i=1

(Xi/h)qrp(Xi/h)K•,h(Xi).

When nh→∞, nm→∞ and h→ 0, CCT’s Lemma SA.1 and SA.2 imply that these terms have

well-defined limits under Assumptions 2.1 and 2.2.

Let β̂Z•,p(h) be the coefficient estimators from the weighted regression of Zi on rp(Xi):

β̂Z•,p(h) = Hp(h)Γ•,p(h)−1 1
n

n∑
i=1

rp(Xi/h)ZiK•,h(Xi)

with Hp(h) = diag(1, h−1, . . . , h−p). These coefficients are related to the quantities of interest by

µ̂
(ν)
Z•,p(h) = ν!e′ν β̂Z•,p(h)

and

ζ̂ν,p(h) =
µ̂

(ν)
Y+,p(h)− µ̂(ν)

Y−,p(h)

µ̂
(ν)
T+,p(h)− µ̂(ν)

T−,p(h)

for ν = 0, . . . , p.
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B.0.1 Proof of Theorem 2.1

Based on the bias calculated from Algorithm 2.1, the difference between the bias-corrected

estimator and the true treatment effect is

ζ̂ν,p(h)−∆∗ν,p,q(h, b)− ζν = (ζ̂ν,p(h)− ζ)− (E∗
τ̂∗Y,ν,p(h)

τ̂∗T,ν,p(h)
−
τ∗Y,ν
τ∗T,ν

).

The first two terms on the right side can be written as

ζ̂ν,p(h)− ζν =
1

τT,ν
(τ̂Y,ν,p(h)− τY,ν)−

τY,ν
τ2
T,ν

(τ̂T,ν,p(h)− τT,ν)

+
τY,ν

τ2
T,ν τ̂T,ν,p

(τ̂T,ν,p(h)− τT,ν)2 − 1

τT,ν τ̂T,ν,p
(τ̂Y,ν,p(h)− τY,ν)(τ̂T,ν,p(h)− τT,ν)

=
1

τT,ν
(τ̂Y,ν,p(h)− τY,ν)−

τY,ν
τ2
T,ν

(τ̂T,ν,p(h)− τT,ν) +Rn,

with Rn = Op(
1

nh1+2ν + h2(p+1−ν)) (CCT’s Lemma A.2). Similarly, the last two terms on the right

side can be written as

E
∗ τ̂
∗
Y,ν,p(h)

τ̂∗T,ν,p(h)
−
τ∗Y,ν
τ∗T,ν

=
1

τ∗T,ν
(E∗ τ̂∗Y,ν,p(h)− τ∗Y,ν)−

τ∗Y,ν
τ∗2T,ν

(E∗ τ̂∗T,ν,p(h)− τ∗T,ν) +R∗n,

with R∗n = Op(
1

nh1+2ν + h2(p+1−ν)). By construction of the wild bootstrap DGP,

Z∗i =


rq(Xi/b)

′Hq(b)
−1β∗Z+,q + ε∗i Xi ≥ 0

rq(Xi/b)
′Hq(b)

−1β∗Z−,q + ε∗i Xi < 0,

with β∗Z+,q and β∗Z−,q being the true parameters in the bootstrap data. Equivalently, µ
∗(ν)
Z• =

ν!e′νβ
∗
Z•,q is the true treatment effect in the bootstrap data. CCT’s Lemma SA.3 indicates that

E
∗ µ̂
∗(ν)
Z•,p(h)− µ∗(ν)

Z• = h1+p−νµ
∗(1+p)
Z• B•,ν,p,1+p(h)/(1 + p)! +Op(h

2+p−ν),

which allows for an analytical form of the bias in the bootstrap data:

E
∗ τ̂∗Z,ν,p(h)− τ∗Z,ν = h1+p−ν(µ∗(1+p)

Z+ B+,ν,p,p+1(h)− µ∗(1+p)
Z− B−,ν,p,p+1(h)

)
/(1 + p)! +Op(h

2+p−ν).

Notice that CCT’s bias term is only slightly different from this. They use the following formula for

bias correction:

τ̂ bcZ,ν,p,q(h, b) = τ̂Z,ν,p(h)− h1+p−ν(µ̂(1+p)
Z+,q B+,ν,p,p+1(h)− µ̂(1+p)

Z−,q B−,ν,p,p+1(h)
)
/(1 + p)!.
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Built on above preparations, it can be shown that

ζ̂ν,p(h)−∆∗ν,p,q(h, b)−ζν =
1

τT,ν
(τ̂ bcY,ν,p,q(h, b)−τY,ν)−

τY,ν
τ2
T,ν

(τ̂ bcT,ν,p,q(h, b)−τT,ν)+Rn−R∗n−R∗bcn +Op(h
2+p−ν),

(B.1)

where R∗bcn is defined by:

R∗bcn =
1

τ∗T,ν
h1+p−ν(µ∗(1+p)

Y+ B+,ν,p,p+1(h)− µ∗(1+p)
Y− B−,ν,p,p+1(h)

)
/(1 + p)!

−
τ∗Y,ν
τ∗2T.ν

h1+p−ν(µ∗(1+p)
T+ B+,ν,p,p+1(h)− µ∗(1+p)

T− B−,ν,p,p+1(h)
)
/(1 + p)!

− 1

τT,ν
h1+p−ν(µ̂(1+p)

Y+,qB+,ν,p,p+1(h)− µ̂(1+p)
Y−,qB−,ν,p,p+1(h)

)
/(1 + p)!

+
τY,ν
τ2
T,ν

h1+p−ν(µ̂(1+p)
T+,q B+,ν,p,p+1(h)− µ̂(1+p)

T−,q B−,ν,p,p+1(h)
)
/(1 + p)!

=
1

τ̂T,ν,q(b)
h1+p−ν(µ̂(1+p)

Y+,qB+,ν,p,p+1(h)− µ̂(1+p)
Y−,qB−,ν,p,p+1(h)

)
/(1 + p)!

−
τ̂Y,ν,q(b)

τ̂2
T,ν,q(b)

h1+p−ν(µ̂(1+p)
T+,q B+,ν,p,p+1(h)− µ̂(1+p)

T−,q B−,ν,p,p+1(h)
)
/(1 + p)!

− 1

τT,ν
h1+p−ν(µ̂(1+p)

Y+,qB+,ν,p,p+1(h)− µ̂(1+p)
Y−,qB−,ν,p,p+1(h)

)
/(1 + p)!

+
τY,ν
τ2
T,ν

h1+p−ν(µ̂(1+p)
T+,q B+,ν,p,p+1(h)− µ̂(1+p)

T−,q B−,ν,p,p+1(h)
)
/(1 + p)!

=(
1

τ̂T,ν,q(b)
− 1

τT,ν
)h1+p−ν(µ̂(1+p)

Y+,qB+,ν,p,p+1(h)− µ̂(1+p)
Y−,qB−,ν,p,p+1(h)

)
/(1 + p)!

− (
τ̂Y,ν,q(b)

τ̂2
T,ν,q(b)

−
τY,ν
τ2
T,ν

)h1+p−ν(µ̂(1+p)
T+,q B+,ν,p,p+1(h)− µ̂(1+p)

T−,q B−,ν,p,p+1(h)
)
/(1 + p)!

=h1+p−νOp(
1√

nb1+2ν
+ b1+q−ν)Op(1 +

1√
nb3+2p

).

The second equality holds because µ
∗(1+p)
Z• = µ̂

(1+p)
Z•,q (b) and τ∗Z,ν = τ̂Z,ν,q(b) almost surely because the

bootstrap DGP is obtained by fitting a local polynomials of order q. The last equality holds because

of similar argument in CCT’s Theorem A.2. Asymptotic normality of ζ̂ν,p(h) − ∆∗ν,p,q(h, b) − ζν

then follows from normality of τ̂ bcY,ν,p,q(h, b) − τY,ν , τ̂ bcT,ν,p,q(h, b) − τT,ν (CCT’s Theorem 1) and the

fact that remaining terms Rn, R∗n, R∗bcn and Op(h
2+p−ν) are negligible.
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CCT have shown that V bc(h, b) = Op(
1

nh1+2ν + h2(1+p−ν)

nb3+2p ) (Lemma SA.4) and R2
n = op(V

bc(h, b))

(Theorem A.2). In addition, because Op(h
2+p−ν) = op(R

∗bc
n ), it suffices to show that

R∗bcn
2

V bc(h, b)
=Op

(
min{nh1+ν ,

nb3+2p

h2(1+p−ν)
}
)
h2(1+p−ν)Op

( 1

nb1+2ν
+ b2(1+q−ν)

)
Op
(
1 +

1

nb3+2p

)
=Op

(
min{nh3+2p, nb3+2p}

)
Op
( 1

nb1+2ν
+ b2(1+q−ν)

)
Op
(
1 +

1

nb3+2p

)
=Op

(
b2+2(p−ν) min{(h

b
)3+2p, 1}+ nb2(1+q−ν) min{nh3+2p, nb3+2p}

)
Op
(
1 +

1

nb3+2p

)
=Op

(
b2+2(p−ν) min{(h

b
)3+2p, 1}+ nb2(q−p)b2(1+p−ν) min{nh3+2p, nb3+2p}

)
+Op

( 1

nb1+2ν
min{(h

b
)3+2p, 1}+ b2(1+q−ν) min{(h

b
)3+2p, 1}

)
=op(1),

provided that nmin{h3+2p, b3+2p}max{h2, b2(q−p)} → 0 and nmin{h, b1+2ν} → ∞. .

B.0.2 Proof of Theorem 2.2

Repeat the steps from Theorem 2.1’s proof for the iterated bootstrap to get

ζ̂∗ν,p(h)−∆∗∗ν,p,q(h, b)−ζ∗ν =
1

τ∗T,ν
(τ̂∗bcY,ν,p,q(h, b)−τ∗Y,ν)−

τ∗Y,ν
τ∗2T,ν

(τ̂∗bcT,ν,p,q(h, b)−τ∗T,ν)+R∗n−R∗∗n −R∗∗bcn +Op(h
2+p−ν),

As is proved in previous section, the higher order terms do not contribute to its asymptotic vari-

ance and can be ignored. It will be firstly shown that the variance of 1
τ∗T,ν

(τ̂∗bcY,ν,p,q(h, b) − τ∗Y,ν) −
τ∗Y,ν
τ∗2T,ν

(τ̂∗bcT,ν,p,q(h, b)−τ∗T,ν) converges to that of 1
τT,ν

(τ̂ bcY,ν,p,q(h, b)−τY,ν)− τY,ν
τ2T,ν

(τ̂ bcT,ν,p,q(h, b)−τT,ν), then

its asymptotic normality will be proved.
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Proof for variance convergence in probability. Rewrite bias-corrected estimator for Z:

τ̂ bcZ,ν,p,q(h, b)− τZ,ν =(τ̂Z,ν,p(h)−E τ̂Z,ν,p(h)) + (E τ̂Z,ν,p(h)− τZ,ν)− (E∗ τ̂∗Z,ν,p(h)− τ∗Z,ν)

=τ̂Z,ν,p(h)−E τ̂Z,ν,p(h)

+ h1+p−ν(µ̂
(q)
Z−,q(b)− µ

(q)
Z−)B−,ν,p,p+1(h)/(1 + p)!

− h1+p−ν(µ̂
(q)
Z+,q(b)− µ

(q)
Z+)B+,ν,p,p+1(h)/(1 + p)!

+Op(h
2+p−ν)

=ν!e′νΓ+,p(h)−1
(

1
n

n∑
i=1

rp(Xi/h)K+,h(Xi)εZi

)
− ν!e′νΓ−,p(h)−1

(
1
n

n∑
i=1

rp(Xi/h)K−,h(Xi)εZi

)
+
q!e′qh

1+p−ν

(1 + p)!bq
Γ−,q(b)

−1
(

1
n

n∑
i=1

rq(Xi/b)K−,b(Xi)εZi

)
B−,ν,p,p+1(h)

−
q!e′qh

1+p−ν

(1 + p)!bq
Γ+,q(b)

−1
(

1
n

n∑
i=1

rq(Xi/b)K+,b(Xi)εZi

)
B+,ν,p,p+1(h)

+Op(h
2+p−ν)

=
n∑
i=1

W (Xi)εZi +Op(h
2+p−ν)

with

W (Xi) = W+(Xi)−W−(Xi)

W•(Xi) = 1
nν!e′νΓ•,p(h)−1rp(Xi/h)K•,h(Xi)− 1

n

q!e′qh
1+p−ν

(1 + p)!bq
Γ•,q(b)

−1rq(Xi/b)K•,b(Xi).

With this simplified notation, we have

1

τT,ν
(τ̂ bcY,ν,p,q(h, b)− τY,ν)−

τY,ν
τ2
T,ν

(τ̂ bcT,ν,p,q(h, b)− τT,ν) =
n∑
i=1

W (Xi)(
1

τT,ν
εY i −

τY,ν
τ2
T,ν

εT i) +Op(h
2+p−ν),

which has variance

V
( n∑
i=1

W (Xi)(
1

τT,ν
εY i −

τY,ν
τ2
T,ν

εT i)
)

=

n∑
i=1

W (Xi)
2(

1

τ2
T,ν

σ2
Y i +

τ2
Y,ν

τ4
T,ν

σ2
T i −

2τY,ν
τ3
T,ν

σY i,T i).

Apply similar steps to the iterated bootstrap, we have

1

τ∗T,ν
(τ̂∗bcY,ν,p,q(h, b)− τ∗Y,ν)−

τ∗Y,ν
τ∗2T,ν

(τ̂∗bcT,ν,p,q(h, b)− τ∗T,ν) =
n∑
i=1

W (Xi)(
1

τ∗T,ν
ε∗Y i −

τ∗Y,ν
τ∗2T,ν

ε∗T i),
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which, by the construction of wild bootstrap, has variance

V
∗ ( n∑

i=1

W (Xi)(
1

τ∗T,ν
ε∗Y i −

τ∗Y,ν
τ∗2T,ν

ε∗T i)
)

=
n∑
i=1

W (Xi)
2(

1

τ∗2T,ν
ε̂2
Y i +

τ∗2Y,ν
τ∗4T,ν

ε̂2
T i −

2τ∗Y,ν
τ∗3T,ν

ε̂Y iε̂T i).

By the standard argument on the convergence of residuals to the population error, it is en-

sured that
∑n

i=1W (Xi)
2ε̂2
Y i →p

∑n
i=1W (Xi)

2σ2
Y i,

∑n
i=1W (Xi)

2ε̂2
T i →p

∑n
i=1W (Xi)

2σ2
T i and∑n

i=1W (Xi)
2ε̂Y iε̂T i →p

∑n
i=1W (Xi)

2σY i,Ti . Combined with the fact that τ∗Z,ν = τ̂Z,q(b) →p τZ ,

the proof for convergence of variance is complete.

Proof for asymptotic normality. Conditional on the regressors and residuals, {W (Xi)(
1
τ∗T
ε̂Y i−

τ∗Y
τ∗2T
ε̂Ti)e

∗
i } is a sequence of independent and mean zero random variables. In addition, it consists

of four parts based on the definition of W (Xi). It can be shown that each part is asymptoti-

cally normal by Lindeberg-Feller CLT. The proof below is an example showing that the first part

1
nν!e′νΓ•,p(h)−1rp(Xi/h)K•,h(Xi)(

1
τ∗T
ε̂Y i −

τ∗Y
τ∗2T
ε̂T i)e

∗
i is asymptotically normal.

The Liapunov’s condition requires that

1

s2+δ
n

n∑
i=1

E|Hi(Xi)|2+δ →p 0

with

Hi(Xi) = 1
nν!e′νΓ•,p(h)−1rp(Xi/h)K•,h(Xi)(

1

τ∗T
ε̂Y i −

τ∗Y
τ∗2T

ε̂T i)e
∗
i ; s2

n =

n∑
i=1

V(Hi).

Based on CCT’s Lemma SA.1, we know that

n∑
i=1

E|Hi(Xi)|2+δ = Op(
1

(nh)1+δ
),

s2
n = Op(

1

nh
),

which verifies the Liapunov’s condition given that nh → ∞. Similar arguments can be applied to

other three parts. .
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APPENDIX C. ADDITIONAL MATERIAL FOR CHAPTER 3

Proof of Proposition 3.1. Under the minimum probabilistic requirements specified by equations

(3.3b) - (3.3d), the vector ((PW )T , (PE)T )T has a convex geometry because it is defined by a set

of linear restrictions. Its geometry is closed because the linear restrictions are in the form of “≥”,

“=” and “≤”. As a result, the geometry of the subvector PE is also closed and convex.

Proof of proposition 3.2. The expected outcome conditional on the treatment Z = z is

E[Y |Z = z] =
∑
y

yPY |Z(y|z) =
∑
y

y
PY,Z(y, z)

PZ(z)

=
∑
y

y

∑
f 1[f(z) = y]PF (f)PZ|F (z|f)

PZ(z)

=
∑
y

∑
f

yP[Y (z) = y, F = f ]
PZ|F (z|f)

PZ(z)
.

The expected outcome if treatment z is received is

E[Y (z)] =
∑
y

yP[Y (z) = y] =
∑
y

∑
f

yP[Y (z) = y, F = f ].

So E[Y |Z = z] is a weighted average of Y (z), with the weights being proportional to
PZ|F (z|f)

PZ(z) .

Proof of Proposition 3.3. Similar to Proposition 3.1, one can show that Hp[PFWE ] is convex. If

H i[PFWE ] is convex, then their intersection H[PFWE ] will also be convex. The mapping through

linear transformation matrix B preserves the convexity.
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